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Abstract

A mathematical drama involves marooned students, a triangle, and a
tense competition between classical and rational trigonometry.

1 Three guys make a triangle
We’ve been marooned on a desert island for a month with plenty of food, pens
and paper, but little entertainment. As a diversion from lying in the sun and
eating tinned sardines, the red haired guy suggests we explain trigonometry to
him, which he never understood in high school, despite being a fan of geometry.
The tall skinny guy and I have just finished the standard first year university
mathematics courses, so we agree this is a splendid idea to pass some time.
Unfortunately we have no trig tables, calculators or computers with us, but

we should be able to explain most everything with just pen and paper. After all,
if you really grasp a mathematical subject, simple examples should be accessible
by hand. Especially if its as basic as high school trigonometry.
So I get out a big piece of graph paper, randomly pick the three points

A1 = [4, 1] A2 = [1, 2] A3 = [2, 4]

and explain that trigonometry is the study of the measurement of triangles.
I propose to demonstrate the theory just for this particular triangle, to keep
everything simple.
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The separation of two points is measured by a distance. The distance be-
tween any two points can be calculated by using Pythagoras’ theorem, so that
for example d1 = |A2, A3| =

√
32 + 12 =

√
10. I happen to know how to com-

pute square roots without a calculator (call me a freak if you will), so with some
work we were able to compute the three distances

d1 = |A2, A3| =
√
5 ≈ 2. 236 067 977 . . .

d2 = |A1, A3| =
√
13 ≈ 3. 605 551 275 . . .

d3 = |A1, A2| =
√
10 ≈ 3. 162 277 660 . . . .

The separation of two lines is measured by an angle, as we all know. To
calculate the angle θ1 = ∠A2A1A3 at the point A1 of the above triangle, we use
the Cosine law. We’ll explain this later; for now we are just going to use it to
calculate the angles. Thus

d21 = d22 + d23 − 2d2d3 cos θ1.
After some wrestling with the square roots, we get the approximate value

cos θ1 =
13 + 10− 5
2
√
10
√
13

=
9√
130
≈ 0.789 352 217

Now we need to recover θ1 from this. Clearly we must invert cosine, and fortu-
nately I remember the formula for the coefficients of the power series from our
calculus class, allowing us to write

arccosx =
1

2
π − x− 1

6
x3 − 3

40
x5 − 5

112
x7 − 35

1152
x9 − 63

2816
x11 − 231

13 312
x13

− 143

10 240
x15 − 6435

557 056
x17 − 12 155

1245 184
x19 − 46 189

5505 024
x21 + · · ·

where as usual
π ≈ 3. 141 592 653 . . . .

Now we substitute x = 0.789 352 217 into this power series up to degree 21.
Perhaps you haven’t done this kind of calculation recently, but let me tell you,
it sharpens the arithmetical skills! We all pitch in, and many hours later obtain

θ1 = arccosx ≈ 0.661 114 479 . . . .
But a bit of analysis with power series error terms shows that we are correct
probably only to three decimal places. If we had used terms up to degree 39,
then we would be correct probably only to five decimal places. That’s a bit
depressing, isn’t it?
So, without a calculator, and using the obvious approach, it looks like we are

in for a hard time. Why don’t they tell you in School how hard it is to come up
with angles in real life? Even with some clever short cuts, it takes us a day of
feverish calculations to find the three angles in radians up to 9 decimal places.
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They are

θ1 ≈ 0.661 043 168 . . .

θ2 ≈ 1. 428 899 272 . . .

θ3 ≈ 1. 051 650 212 . . . .

Note the relation
θ1 + θ2 + θ3 ≈ 3. 141 592 652 . . .

which is close enough to π.
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Distances and angles

With the distances d1, d2 and d3 and the angles θ1, θ2 and θ3 finally in hand, we
are ready to develop and illustrate the main laws of trigonometry! The Cosine
law was already mentioned and the Sine law is

sin θ1
d1

=
sin θ2
d2

=
sin θ3
d3

.

Then we’ll introduce the tangent, secant and cosecant functions, the Law of
tangents, and all those lovely relations, special values and graphs for the trig
functions and their inverse functions. Not to mention the interesting power
series expansions used to compute them in calculators and computers.
I’m about to start explaining all this, when I notice the red haired fellow

has that dull vacant look in his eyes. The tall skinny guy, who has been lost
in thought, notices it too, and says ‘You know, I think we should teach him
rational trigonometry instead.’

2 Enter rational trigonometry
‘What in Dickens is rational trigonometry?’ I ask. Turns out he’s been reading
a recent book [Wildberger] which gives some newfangled ‘simplified’ form of
trigonometry, in which the usual trig functions play no role and the five main
laws are supposedly quite simple. ‘How can you possibly have trigonometry
without trig functions?’ the red haired guy asks.
Let me explain, says the tall fellow. In rational trigonometry, instead of

lengths and angles one measures the quadrances and the spreads of a triangle.
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So instead of the three distances d1, d2 and d3, rational trigonometry works
with the three quadrances Q1, Q2 and Q3, and instead of the three angles θ1, θ2
and θ3, it uses the three spreads s1, s2 and s3. These are indicated in a diagram
as so, he says, and draws the following picture.
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Quadrances and spreads

The beauty of the theory is that with these as the fundamental concepts, the
laws become polynomial, and all those transcendental trigonometric functions
become unnecessary.
‘That sounds good’, says the red haired guy, ‘so tell us–what exactly are

quadrances and spreads, and what are their values for our triangle?’
The separation of two points is measured by a quadrance and is just the

square of the distance. So the quadrances of our triangle are

Q1 = Q (A2, A3) = 5

Q2 = Q (A1, A3) = 13

Q3 = Q (A1, A2) = 10.

The separation of two lines is measured by a spread, and is always a number
between 0 and 1, being 0 when the lines are parallel and 1 when the lines
are perpendicular. An angle of 45◦ is a spread of 1/2, and 30◦ and 60◦ are
respectively spreads of 1/4 and 3/4.
In general the spread between two lines is the quotient of two quadrances.

Suppose the lines meet at a point A, and B is any other point on either of the
two lines, with C the foot of the perpendicular from B to the other line. Then
the spread s between the lines is

s =
Q (B,C)

Q (A,B)
.

B

CA s
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You can make a spread protractor that measures spreads in the same way
an ordinary protractor measures angles. Here is one created by Mike Ossmann
[Ossmann], although of course we didn’t have such a thing at the time.

‘But the notion of a spread is not linear like an angle is!’ I object. Sure, so what?
says the skinny guy. Linear or non-linear is not the point. What’s important
is: how easy is it to get good answers? With quadrance and spread, the basic
laws are polynomial, not transcendental, so they are much simpler–and more
accurate.
‘Okay, so how do you find the spreads in our triangle?’ I ask.
Use one of the basic laws, the one that plays the role of the Cosine law. It’s

called the Cross law, and says that

(Q2 +Q3 −Q1)
2
= 4Q2Q3 (1− s1) .

So since we already have Q1, Q2 and Q3, we can calculate that

1− s1 =
(10 + 13− 5)2
4× 10× 13 =

81

130

so
s1 = 49/130.

Similarly

s2 = 49/50

s3 = 49/65.

That gives the three quadrances and the three spreads of the triangle.
‘So what are the other four laws?’ I ask. One is the Spread law, which

replaces the Sine law and states that

s1
Q1

=
s2
Q2

=
s3
Q3

.
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Another is the Triple spread formula, which states that the three spreads of
the triangle satisfy

(s1 + s2 + s3)
2
= 2

¡
s21 + s22 + s23

¢
+ 4s1s2s3.

This is the analog to the fact that the sum of the angles is π. So we can check
that for our triangleµ

49

130
+
49

50
+
49

65

¶2
=

470 596

105 625

= 2

Ãµ
49

130

¶2
+

µ
49

50

¶2
+

µ
49

65

¶2!
+4× 49

130
× 49
50
× 49
65

.

‘But surely that’s a lot more complicated than the statement that the sum of
the angles is π,’ I say.
Only if you forget that π is essentially unknowable–you ever only work

with some rational approximation to it, so that numerical statements involving
it are inevitably only approximations to the truth. What we’ve just checked is
completely 100% accurate, he replies.
‘And the other two laws?’ Actually they are just special cases of the Cross

law. When s3 = 0 the three points are collinear and then the three quadrances
satisfy (Q1 +Q2 −Q3)

2 = 4Q1Q2 which can be written more symmetrically as

(Q1 +Q2 +Q3)
2 = 2

¡
Q21 +Q22 +Q23

¢
.

That’s called the Triple quad formula. Note that the Triple quad formula
and the Triple spread formula differ only by a single cubic term.
And when s3 = 1 you get Pythagoras’ theorem in the form Q1+Q2 = Q3.

Which, you have to admit, is a pleasant form for the most important theorem
in all of mathematics.
These are the five main laws of rational trigonometry. According to Wild-

berger, that’s pretty well all you need to solve the majority of trigonometry
problems.
We’re silent at first, but the red haired guy seems to have emerged from his

funk. ‘Heh, I think I could get this,’ he says.

3 A contest emerges
I say ‘Clearly rational trigonometry is just some kind of cute reformulation of
what we already know’.
‘Really?’ replies the skinny guy. ‘Except that it took me fifteen minutes to

calculate the three quadrances and spreads, with no inaccuracy at all, while it
took us a whole day to calculate the distances and angles, and we still only get
everything to 9 decimal places. Assuming we found all our mistakes, of course’.
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‘Instead of engaging in rhetoric,’ says the red haired fellow, ‘how about
applying some scientific methodology? We now have two competing theories.
Let’s see how each solves some specific problems. We’ll have a trigonometry
challenge! The theory which loses gets expelled from the curriculum. Sound
fair?’
Of course we both agreed, and after some discussion we decided to allow

only use of the triangle’s distances and angles, or alternatively its quadrances
and spreads, to solve the challenges. In other words, no analytic geometry
involving the coordinates of the points A1, A2 and A3 was to be involved–just
trigonometry. Then we were off!

4 Area
‘What’s the area of the triangle?’ was the first question.
‘Well, the ancient Greeks knew how to do that one,’ I said merrily. Once

you have the three side lengths d1, d2 and d3, the classical Heron’s formula for
the area a is

a =
p
s (s− d1) (s− d2) (s− d3)

where s = (d1 + d2 + d3) /2. So using our known values of d1, d2 and d3, some
calculation (including that painful square root procedure) showed that

a ≈ 3. 499 999 999.
The tall skinny guy explained that in rational trigonometry the area was not
as fundamental as the quadrea A of the triangle, which was defined as the
difference between the left and right sides of the Triple quad formula, and turned
out to be sixteen times the square of the usual area. Thus

A = (Q1 +Q2 +Q3)
2 − 2 ¡Q21 +Q22 +Q23

¢
= (5 + 13 + 10)

2 − 2 (25 + 169 + 100)
= 196.

Of course that meant that the area was the square root of 196/16 = 49/4 which
was 3.5. Hmmm... Was this some kind of black magic, or just pulling the wool
over my eyes?

5 An altitude
The second challenge was: ‘What is the length, or quadrance, of the altitude
from A1 to the opposite side A2A3?’
‘This is a completely straightforward question from a classical point of view,

just geared to the definition of the sine of an angle,’ I explain. Denoting the
length of the altitude by h, clearly

h = d2 sin θ3

= 3. 605 551 275× sin (1. 051 650 212) .
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To calculate the sine to 9 decimal places, some analysis shows that we need the
power series expansion

sinx = x− 1
6
x3 +

1

120
x5 − 1

5040
x7 +

1

362 880
x9 − 1

39 916 800
x11 + · · ·

up to terms of degree 11, so we get the value

sin (1. 428 899 272) = 0.868 243 142

and then a single multiplication gives

h = 3. 130 495 167.

That took me more than two hours (and I’m pretty good with arithmetic).
I think your confidence is misplaced, says the tall skinny guy. From the

rational point of view, the quadrance H of the altitude is, from the definition

H = Q2s3

= 13× 49
65
=
49

5
.

To get your distance h, just take the square root of that, namely

h =
√
H =

7√
5
.

That took him two minutes.
A computation then showed that my obtained value of h agreed with the

decimal expansion of 7/
√
5. That was, I have to admit, a tad disconcerting.

6 A median
The third challenge was: ‘Let’s consider the median from A2 to the side A1A3.
What’s its length, or quadrance? And what’s the angle, or spread, between it
and the side A1A3?’
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I knew what to do. Call the midpoint of A1A3 the pointM2 and suppose that
|A2,M2| = p. Then the Cosine law in the triangle A1A2M2 gives immediately

p2 = (d2/2)
2 + d23 − 2d2d3 cos θ1

A

A

M
p

1

2

2

A33

�

A median

Since we know d2, d3 and θ1, its just a calculation. Of course we’ll use the fact
that we calculated

cos θ1 =
9√
130

earlier, and the expressions for d2 and d3 as
√
13 and

√
10 respectively. Thus

p2 =
³√
13/2

´2
+
³√
10
´2
− 2×

√
13

2
×
√
10× 9√

130

=
13

4
+ 10− 9 = 17

2

and so p =
p
17/2. Easy. Now as for that angle ∠A2M2A1, call it α. The Sine

law in A1A2M1 shows that

sinα =
d3 sin θ1

p

=
2
√
5 sin θ1√
17

Thus

α = arcsin

Ã
2
√
5 sin θ1√
17

!
.

Good grief, do we really have to compute this? No wonder the rather natural
question about what angles the medians make with the opposite sides of a
triangle is rarely studied in geometry courses. Still, there must be some clever
way of exploiting the fact that we already know that cos θ1 = 9/

√
130....

Yes, there is, says the tall guy. Its called rational trigonometry. Let’s start
again with the quadrance P = Q (A1,M1) , which is of course your p2, and let
r be the spread between the median and the side A1A3.
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Then the Cross law in A1A2M1 gives

(P −Q3 −Q2/4)
2
= 4×Q3 × Q2

4
× (1− s1)

or
(P − 10− 13/4)2 = 4× 10× 13

4
× (1− 49/130)

which yields the quadratic equation

P 2 − 53
2
P +

1513

16
= 0.

Use the quadratic formula to get P = 17/4 or P = 89/4. ‘Aha! So which one
is it then?’ I ask. Well probably the Triangle spread rules that Wildberger
mentions show which solution to take, but I don’t know them, so lets see... if
we also take the Cross law in A2A3M2 we get

(P −Q1 −Q2/4)
2
= 4×Q1 × Q2

4
× (1− s3)

or

(P − 5− 13/4)2 = 4× 5× 13
4
×
µ
1− 49

65

¶
.

This gives

P 2 − 33
2
P +

833

16
= 0.

Take the difference between this quadratic equation and the previous one to get
the linear equation

33

2
P − 833

16
− 53
2
P +

1513

16
= 0

with solution P = 17/4. As for the spread r between A2M2 and A1A3, the
Spread law in A1A2M1 gives

r

10
=
49/130

17/4

so that r = 196/221.
I have to admit, I was starting to get a bit worried. Could it be that we had

spent years learning the wrong theory?
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7 An angle bisector
‘Well, its pretty clear who’s winning so far’, says the red haired guy. ‘For my last
question,’ he says, ‘let’s consider the angle bisector at A3. What is its length,
or quadrance, and what is the angle, or spread, which it makes with A1A2?’

A

A

B

b

1

2

A33

� �

An angle bisector

Well this is clearly a question involving angle chasing, so I am confident I’ll
win handily. The equal angles formed by the bisector at A3 are just β = θ3/2 =
0.525 825 106 . If the bisector meets A2A3 at B, then the angle ∠A2BA3 is

π − 1. 428 899 272− 0.525 825 106 = 1. 186 868 276
and the length b of the bisector is by the Sine law

b =
d1 sin θ2

sin (1. 186 868 275 59)

=
2. 236 067 977× sin (1. 428 899 272)

sin (1. 186 868 276)

= 2. 387 395 616.

Okay, I do admit that it took me close to four hours to make this calculation
(you have to go up to degree 15 in one of the power series to get accuracy to
9 digits), and this gave the skinny guy time to figure out how to do things
rationally. Here’s what he did.
Set Q (A1, B) = P1, Q (A2, B) = P2 and Q (A3, B) = P3 and suppose the

equal spreads made by the bisector at A3 are u.

A
P

A
P B 1

1

2

2

A

u

v

u

P

33

3

Angle bisector again
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The Spread laws in the triangles A1A3B and A2A3B give

u

P1
=

s1
P3

u

P2
=

s2
P3

.

Divide one of these equations by the other to get

P2
P1
=

s1
s2
=
50

130
=
5

13

But {P1, P2, Q3} satisfy the Triple quad formula, since they are the quadrances
formed by three collinear points, so that

(P1 + P2 − 10)2 = 4P1P2.

Divide both sides by P 21 and use the previous equation to obtainµ
1 +

5

13
− 10

P1

¶2
= 4× 5

13

which yields
16P 21 − 1170P1 + 4225 = 0

with solutions

P1 =
585± 65√65

16
.

The two solutions correspond to the two angle bisectors at A3 (one of them is
external). The value we want is

P1 =
³
585− 65

√
65
´
/16

so that
P2 = 5

³
585− 65

√
65
´
/ (16× 13) .

The Cross laws in A1A3B and A1A3B are

(P3 − P1 −Q2)
2 = 4P1Q2 (1− s1)

(P3 − P2 −Q1)
2
= 4P2Q1 (1− s2)

orÃ
P3 −

Ã
585− 65√65

16

!
− 13

!2
= 4×

Ã
585− 65√65

16

!
× 13×

µ
1− 49

130

¶
Ã
P3 − 5

Ã
585− 65√65
16× 13

!
− 5
!2

= 20×
Ã
585− 65√65
16× 13

!
× 5×

µ
1− 49

50

¶
.

12



These reduce to the quadratic equations

P 23 + P3

µ
65

8

√
65− 793

8

¶
+
300 105

128
− 34 697

128

√
65 = 0

P 23 + P3

µ
25

8

√
65− 305

8

¶
+
66 105

128
− 7545
128

√
65 = 0.

Take their difference to get the linear equation

P3

³
61− 5

√
65
´
− 14 625

8
+
1697

8

√
65 = 0

with solution
P3 =

325

16
− 29
16

√
65.

To find the spread v between the A3 bisector and the opposite side A1A2, use
the Spread law in A1A3B

v

13
=
49/130

P3
.

Thus

v =
49

10

µ
325

16
− 29
16

√
65

¶−1
=

1

2
+
29

650

√
65.

Now it took him about two hours to go through all these calculations, but once
we computed that my answers could be obtained as decimal approximations to
his, the penny dropped, and I admitted defeat. It looked like rational trigonom-
etry was the right way of thinking about these problems, giving answers that
really were correct, and not just approximations to the truth.

8 A happy ending
Fortunately we were ultimately rescued from our desert island plight. But not
before we had lots of time to verify that rational trigonometry gives better
answers to a whole host of geometric problems. The red-haired guy cheerfully
summed it up this way: ‘Classical trigonometry to rational trigonometry is like
tinned sardines to roast dinners.’
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