- D. Gunawan, M.-N. Tran, K. Suzuki, J. Dick, R. Kohn, Computationally Efficient Bayesian Estimation of High Dimensional Copulas with Discrete and Mixed Margins. arXiv:1608.06174 [stat.ME]

- Kuo, F. Y.; Schwab, Ch.; Sloan, I. H. Quasi-Monte Carlo methods for high-dimensional integration: the standard (weighted Hilbert space) setting and beyond. ANZIAM J. 53 (2011), no. 1, 1-37.
- Kuo, Frances Y.; Schwab, Christoph; Sloan, Ian H. Quasi-Monte Carlo finite element methods for a class of elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal. 50 (2012), no. 6, 3351-3374.

- H. Weyl, Ueber die Gleichverteilung von Zahlen mod. Eins. Math. Ann., 77, 313-352, 1916.

- K. Roth, On irregularities of distribution. Mathematika, 1, 73-79, 1954.

- J. Dick, Q. T. Le Gia, F. Y. Kuo and Ch. Schwab, Fast QMC matrix-vector multiplication. SIAM J. Sci. Comput., 37, A1436--A1450, 2015. DOI: 10.1137/151005518 For the arXiv version see here. Non-optimized implementations of the fast QMC matrix-vector multiplication in Matlab together with some examples can be found here.

- J. Baldeaux and J. Dick, QMC Rules of Arbitrary High Order: Reproducing Kernel Hilbert space approach. Constructive Approximation, 30, 495--527, 2009. doi: 10.1007/s00365-009-9074-y
- J. Dick, The decay of the Walsh coefficients of smooth functions. Bull. Austral. Math. Soc., 80, 430--453, 2009. doi: 10.1017/S0004972709000392 For an arXiv version see here.

- Ch. Aistleitner, J. Brauchart and J. Dick, Point sets on the sphere S^2 with small spherical cap discrepancy. Discrete Comput. Geom., 48, 990--1024, 2012. DOI: 10.1007/s00454-012-9451-3 For an arXiv version see here.
- J. S. Brauchart and J. Dick, A simple proof of Stolarsky's invariance principle. Proc. Amer. Math. Soc., 141, 2085--2096, 2013. DOI:10.1090/S0002-9939-2013-11490-5 For the arXiv version see here.

- Su Chen, Consistency and convergence rate of Markov chain quasi Monte Carlo with examples. Stanford University, 2011.
- S. Chen, J. Dick and A.B. Owen, Consistency of Markov Chain Quasi-Monte Carlo on continuous state spaces. Ann. Stat., 39, 679--701, 2011. doi: 10.1214/10-AOS831 For a blog entry and preprint version of this paper see here.
- J. Dick, D. Rudolf and H. Zhu, Discrepancy bounds for uniformly ergodic Markov chain quasi-Monte Carlo. Submitted, 2013. For an arXiv version see here.
- Seth Tribble, Markov chain Monte Carlo Algorithms using completely uniformly distributed driving sequences. PhD Thesis, Stanford University, 2007.
- H. Zhu and J. Dick, Discrepancy bounds for deterministic acceptance-rejection samplers. Electron. J. Stat., 8, 678--707, 2014. DOI:10.1214/14-EJS898 For the arXiv version see here.