42. |
An Algebraic Geometric Foundation for a Classification of Superintegrable Systems in Arbitrary Dimension
Jonathan Kress, Konrad Schöbel and Andreas Volmer
preprint
(arXiv:1911.11925)
|
41. |
An algebraic geometric classification of superintegrable systems in the Euclidean plane
Jonathan Kress and Konrad Schöbel
Journal of Pure and Applied Algebra 223(4) (2019) 1728-1752.
(arXiv:1602.07890 doi:10.1016/j.jpaa.2018.07.005)
|
40. |
Invariant Classification and Limits of Maximally Superintegrable Systems in 3D
J. Capel, J. Kress and S. Post
SIGMA 11 (2015) 038.
(arXiv:1501.06601 doi:10.3842/SIGMA.2015.038)
|
39. |
Invariant classification of second-order conformally flat superintegrable systems
Joshua Capel and Jonathan Kress
J. Phys. A: Math. Theor. 47 (2014) 495202.
(arXiv:1406.3136 doi:10.1088/1751-8113/47/49/495202)
|
38. |
Extended Kepler-Coulomb quantum superintegrable systems in 3 dimensions
E. G. Kalnins, J. M. Kress, W. Miller Jr.
J. Phys. A: Math. Theor. 46 (2013) 085206.
Included in the Highlights of 2013 collection.
(arXiv:1210.8004
doi:10.1088/1751-8113/46/8/085206)
|
37. |
Superintegrability in a non-conformally-flat space
E. G. Kalnins, J. M. Kress, W. Miller Jr.
J. Phys. A: Math. Theor. 46 (2013) 022002.
(arXiv:1211.1452
doi:10.1088/1751-8113/46/2/022002)
|
36. |
Structure relations for the symmetry algebras of quantum superintegrable systems
E. G. Kalnins, J. M. Kress, W. Miller Jr.
J. Phys.: Conf. Ser. 343 (2012) 012075.
(doi:10.1088/1742-6596/343/1/012075)
|
35. |
Laplace-type equations as conformal superintegrable systems. E G Kalnins, J M Kress, W Miller
Jr. and S Post
Adv. Appl. Math. 46 (2011) 396-416.
(arXiv:0908.4316 doi:10.1016/j.aam.2009.11.014)
|
34. |
A recurrence relation approach to higher order quantum superintegrability.
E G Kalnins, J M Kress and W Miller Jr.
SIGMA. 7 (2011) 031.
(arXiv:1011.6548
doi:10.3842/SIGMA.2011.031)
|
33. |
Tools for verifying classical and quantum superintegrability.
E G Kalnins, J M Kress and W Miller Jr.
SIGMA. 6 (2010) 066.
(arXiv:1006.0864
doi:10.3842/SIGMA.2010.066) |
32. |
Superintegrability and higher order constants for quantum systems.
E G Kalnins, J M Kress and W Miller Jr.
J. Phys. A: Math. Theor. 43 (2010) 265205.
(arXiv:1002.2665
doi:10.1088/1751-8113/43/26/265205) |
31. |
Families of classical subgroup separable superintegrable systems.
E G Kalnins, J M Kress and W Miller Jr.
J. Phys. A: Math. Theor. 43 (2010) 092001.
Included in the Highlights of 2010 collection.
(arXiv:0912.3158
doi:10.1088/1751-8113/43/9/092001) |
30. |
Structure
Theory for Second Order 2D Superintegrable Systems with
1-Parameter Potentials. E G Kalnins, J M Kress, W Miller
Jr. and S Post
SIGMA. 5 (2009) 008.
(arXiv:0901.3081
doi:10.3842/SIGMA.2009.008)
|
29. |
Differential forms relating twistors to Dirac fields.
I M Benn and J M Kress.
In the proceedings of the 10th International Conference on Differential Geometry and
its Applications, Palacky University, Olomouc, Czech Republic. August
27 -- 31, 2007 (World Scientific 2008).
|
28. |
Nondegenerate three-dimensional Complex Euclidean Superintegrable Systems and Algebraic Varieties.
E G Kalnins, J M Kress and W Miller Jr.
J. Math. Phys. 48 (2007) 113518.
(arXiv:0708.3044
doi:10.1063/1.2817821)
|
27. |
Fine structure for second order superintegrable systems.
E G Kalnins, J M Kress and W Miller Jr.
In the IMA Volumes in Mathematics and its Applications, Vol. 144,
"Symmetries and Overdetermined Systems of Partial Differential Equations", Springer 2008.
|
26. |
Fine structure for 3D second order superintegrable systems: 3-parameter potentials.
E G Kalnins, J M Kress and W Miller Jr.
J. Phys. A: Math. Theor. 40 (2007) 5875-5892.
|
25. |
Equivalence of superintegrable systems
in two dimensions.
J M Kress.
Phys. Atomic
Nuclei 70 (2007) 560-566.
|
24. |
Second-order superintegrable quantum systems.
W Miller, E G Kalnins and J M Kress.
Phys. Atomic
Nuclei 70 (2007) 576-583.
|
23. |
Nondegenerate superintegrable systems in n-dimensional Euclidean spaces.
E G Kalnins, J M Kress, W Miller and G S Pogosyan.
Phys. Atomic
Nuclei 70 (2007) 545-553.
|
22. |
Nondegenerate 2D complex Euclidean superintegrable
systems and algebraic varieties.
E G Kalnins, J M Kress and W Miller Jr.
J. Phys. A: Math. Theor. 40 (2007) 3399-3411.
|
21. |
Second order
superintegrable systems in conformally flat spaces. V. Two- and
three-dimensional quantum systems.
E G Kalnins, J M Kress and W Miller Jr.
J. Math. Phys. 47 (2006) 093501.
|
20. |
Second order superintegrable systems in conformally flat spaces. IV. The classical 3D Stackel transform and 3D classification theory.
E G Kalnins, J M Kress and W Miller Jr.
J. Math. Phys. 47 (2006) 043514.
|
19. |
Symmetry Operators for the Dirac and Hodge-deRham Equations.
I M Benn and J M Kress.
In 9th International Conference on Differential Geometry and
its Applications, Czech Republic. Charles University in Prague, August
30 - September 3, 2004, (2005) 421-430.
|
18. |
Infinte-order symmetries for quantum separable systems.
W Miller, E G Kalnins, J M Kress and G Pogosyan
Phys. Atomic Nuclei 68 (2005) 1756-1763.
|
17. |
Second order
superintegrable systems in conformally flat spaces. III. 3D classical
structure theory.
E G Kalnins, J M Kress and W Miller Jr.
J. Math. Phys. 46 (2005) 103507.
|
16. |
Second order superintegrable systems in conformally flat
spaces. II. The classical two-dimensional Stäckel
transform.
E G Kalnins, J M Kress and W Miller Jr.
J. Math. Phys. 46 (2005) 053510.
|
15. |
Second-order superintegrable systems in conformally flat
spaces. I. Two-dimensional classical structure theory.
E G Kalnins, J M Kress and W Miller Jr.
J. Math. Phys. 46 (2005) 053509.
|
14. |
Jacobi, Ellipsoidal Coordinates and Superintegrable Systems.
E G Kalnins, J M Kress and W Miller Jr.
J. Nonlin. Math. Phys. 12 (2005) 209-229.
|
13. |
First-Order Dirac Symmetry Operators.
I M Benn and J M Kress.
Class. Quantum Grav. 21 (2004) 427-431.
|
12. |
Superintegrable
Systems in Darboux Spaces.
E G Kalnins, J M Kress, W Miller Jr. and P Winternitz.
J. Math. Phys. 44(12) (2003) 5811-5848.
(arXiv:math-ph/0307039 or
IMA preprint 1929)
|
|
11. |
Multiseparability and Superintegrability in
Three Dimensions.
J M Kress and E G Kalnins.
Proceedings of the XXIII International Colloquium on
Group Theoretical Methods in Physics, Dubna 2000.
Phys. Atomic Nuclei
65(6) (2002) 1047-1051.
|
10. |
Complete sets of invariants for dynamical systems
that admit a separation of variables.
E G Kalnins, J M Kress, W Miller, Jr. and G S Pogosyan.
J. Math. Phys. 43(7) (2002) 3592-3609.
(IMA preprint 1846)
|
9. |
Superintegrability
in a two-dimensional space of non-constant curvature.
E G Kalnins, J M Kress, P Winternitz.
J. Math. Phys. 43(2) (2002) 970-983.
(arXiv:math-ph/0108015)
|
8. |
The Evolution of Trailing Plumes from Active Regions.
C J Durrant, J M Kress and P R Wilson.
Sol. Phys. 201(1) (2001) 57-69.
|
7. |
Completeness of Multiseparable
Superintegrability in Two-Dimensional Constant Curvature Spaces.
E G Kalnins, J M Kress, G S Pogosyan and W Miller Jr.
J. Phys. A: Math. Gen. 34 (2001) 4705-4720
(arXiv:math-ph/0102006 or
IMA preprint 1739)
|
6. |
Simulations of the Polar Field Reversals during Cycle 22.
H B Snodgrass, J M Kress, P R Wilson.
Sol. Phys. 194(1) (2000) 1-17.
|
5. |
Observations of the Polar Field Reversals during Cycle 22.
H B Snodgrass, J M Kress, P R Wilson.
Sol. Phys. 191(1) (2000) 1-19.
|
4. |
Evolution of Isolated Active Regions.
J M Kress and P R Wilson.
Sol. Phys. 189(1) (1999) 147-161.
|
3. |
Solutions of Penrose's equation.
E N Glass and Jonathan Kress.
J. Math. Phys. 40(1) (1999) 309-317.
(arXiv:gr-qc/9809074)
|
2. |
Debye Potentials for Maxwell and Dirac Fields from a
Generalisation of the Killing-Yano Equation.
I M Benn, Philip Charlton and Jonathan Kress.
J. Math. Phys. 38(9) (1997) 4504-4527.
(arXiv:gr-qc/9610037)
|
1. |
Force-free fields from Hertz potentials.
I M Benn and Jonathan Kress.
J. Phys. A: Math. Gen. 29 (1996) 6295-6304.
|