Research


Search: MathSciNet | arXiv | Astrophysical Data System

Publications

42. An Algebraic Geometric Foundation for a Classification of Superintegrable Systems in Arbitrary Dimension
Jonathan Kress, Konrad Schöbel and Andreas Volmer
preprint
(arXiv:1911.11925)
41. An algebraic geometric classification of superintegrable systems in the Euclidean plane
Jonathan Kress and Konrad Schöbel
Journal of Pure and Applied Algebra 223(4) (2019) 1728-1752.
(arXiv:1602.07890 doi:10.1016/j.jpaa.2018.07.005)
40. Invariant Classification and Limits of Maximally Superintegrable Systems in 3D
J. Capel, J. Kress and S. Post
SIGMA 11 (2015) 038.
(arXiv:1501.06601 doi:10.3842/SIGMA.2015.038)
39. Invariant classification of second-order conformally flat superintegrable systems
Joshua Capel and Jonathan Kress
J. Phys. A: Math. Theor. 47 (2014) 495202.
(arXiv:1406.3136 doi:10.1088/1751-8113/47/49/495202)
38. Extended Kepler-Coulomb quantum superintegrable systems in 3 dimensions
E. G. Kalnins, J. M. Kress, W. Miller Jr.
J. Phys. A: Math. Theor. 46 (2013) 085206.
Included in the Highlights of 2013 collection.
(arXiv:1210.8004 doi:10.1088/1751-8113/46/8/085206)
37. Superintegrability in a non-conformally-flat space
E. G. Kalnins, J. M. Kress, W. Miller Jr.
J. Phys. A: Math. Theor. 46 (2013) 022002.
(arXiv:1211.1452 doi:10.1088/1751-8113/46/2/022002)
36. Structure relations for the symmetry algebras of quantum superintegrable systems
E. G. Kalnins, J. M. Kress, W. Miller Jr.
J. Phys.: Conf. Ser. 343 (2012) 012075.
(doi:10.1088/1742-6596/343/1/012075)
35. Laplace-type equations as conformal superintegrable systems.
E G Kalnins, J M Kress, W Miller Jr. and S Post
Adv. Appl. Math. 46 (2011) 396-416.
(arXiv:0908.4316 doi:10.1016/j.aam.2009.11.014)
34. A recurrence relation approach to higher order quantum superintegrability.
E G Kalnins, J M Kress and W Miller Jr.
SIGMA. 7 (2011) 031.
(arXiv:1011.6548 doi:10.3842/SIGMA.2011.031)
33. Tools for verifying classical and quantum superintegrability.
E G Kalnins, J M Kress and W Miller Jr.
SIGMA. 6 (2010) 066.
(arXiv:1006.0864 doi:10.3842/SIGMA.2010.066)
32. Superintegrability and higher order constants for quantum systems.
E G Kalnins, J M Kress and W Miller Jr.
J. Phys. A: Math. Theor. 43 (2010) 265205.
(arXiv:1002.2665 doi:10.1088/1751-8113/43/26/265205)
31. Families of classical subgroup separable superintegrable systems.
E G Kalnins, J M Kress and W Miller Jr.
J. Phys. A: Math. Theor. 43 (2010) 092001.
Included in the Highlights of 2010 collection.
(arXiv:0912.3158 doi:10.1088/1751-8113/43/9/092001)
30. Structure Theory for Second Order 2D Superintegrable Systems with 1-Parameter Potentials.
E G Kalnins, J M Kress, W Miller Jr. and S Post
SIGMA. 5 (2009) 008.
(arXiv:0901.3081 doi:10.3842/SIGMA.2009.008)
29. Differential forms relating twistors to Dirac fields.
I M Benn and J M Kress.
In the proceedings of the 10th International Conference on Differential Geometry and its Applications, Palacky University, Olomouc, Czech Republic. August 27 -- 31, 2007 (World Scientific 2008).
28. Nondegenerate three-dimensional Complex Euclidean Superintegrable Systems and Algebraic Varieties.
E G Kalnins, J M Kress and W Miller Jr.
J. Math. Phys. 48 (2007) 113518.
(arXiv:0708.3044 doi:10.1063/1.2817821)
27. Fine structure for second order superintegrable systems.
E G Kalnins, J M Kress and W Miller Jr.
In the IMA Volumes in Mathematics and its Applications, Vol. 144, "Symmetries and Overdetermined Systems of Partial Differential Equations", Springer 2008.
26. Fine structure for 3D second order superintegrable systems: 3-parameter potentials.
E G Kalnins, J M Kress and W Miller Jr.
J. Phys. A: Math. Theor. 40 (2007) 5875-5892.
25. Equivalence of superintegrable systems in two dimensions.
J M Kress.
Phys. Atomic Nuclei 70 (2007) 560-566.
24. Second-order superintegrable quantum systems.
W Miller, E G Kalnins and J M Kress.
Phys. Atomic Nuclei 70 (2007) 576-583.
23. Nondegenerate superintegrable systems in n-dimensional Euclidean spaces.
E G Kalnins, J M Kress, W Miller and G S Pogosyan.
Phys. Atomic Nuclei 70 (2007) 545-553.
22. Nondegenerate 2D complex Euclidean superintegrable systems and algebraic varieties.
E G Kalnins, J M Kress and W Miller Jr.
J. Phys. A: Math. Theor. 40 (2007) 3399-3411.
21. Second order superintegrable systems in conformally flat spaces. V. Two- and three-dimensional quantum systems.
E G Kalnins, J M Kress and W Miller Jr.
J. Math. Phys. 47 (2006) 093501.
20. Second order superintegrable systems in conformally flat spaces. IV. The classical 3D Stackel transform and 3D classification theory.
E G Kalnins, J M Kress and W Miller Jr.
J. Math. Phys. 47 (2006) 043514.
19. Symmetry Operators for the Dirac and Hodge-deRham Equations.
I M Benn and J M Kress.
In 9th International Conference on Differential Geometry and its Applications, Czech Republic. Charles University in Prague, August 30 - September 3, 2004, (2005) 421-430.
18. Infinte-order symmetries for quantum separable systems.
W Miller, E G Kalnins, J M Kress and G Pogosyan
Phys. Atomic Nuclei 68 (2005) 1756-1763.
17. Second order superintegrable systems in conformally flat spaces. III. 3D classical structure theory.
E G Kalnins, J M Kress and W Miller Jr.
J. Math. Phys. 46 (2005) 103507.
16. Second order superintegrable systems in conformally flat spaces. II. The classical two-dimensional Stäckel transform.
E G Kalnins, J M Kress and W Miller Jr.
J. Math. Phys. 46 (2005) 053510.
15. Second-order superintegrable systems in conformally flat spaces. I. Two-dimensional classical structure theory.
E G Kalnins, J M Kress and W Miller Jr.
J. Math. Phys. 46 (2005) 053509.
14. Jacobi, Ellipsoidal Coordinates and Superintegrable Systems.
E G Kalnins, J M Kress and W Miller Jr.
J. Nonlin. Math. Phys. 12 (2005) 209-229.
13. First-Order Dirac Symmetry Operators.
I M Benn and J M Kress.
Class. Quantum Grav. 21 (2004) 427-431.
12. Superintegrable Systems in Darboux Spaces.
E G Kalnins, J M Kress, W Miller Jr. and P Winternitz.
J. Math. Phys. 44(12) (2003) 5811-5848.
(arXiv:math-ph/0307039 or IMA preprint 1929)
11. Multiseparability and Superintegrability in Three Dimensions.
J M Kress and E G Kalnins.
Proceedings of the XXIII International Colloquium on Group Theoretical Methods in Physics, Dubna 2000.
Phys. Atomic Nuclei 65(6) (2002) 1047-1051.
10. Complete sets of invariants for dynamical systems that admit a separation of variables.
E G Kalnins, J M Kress, W Miller, Jr. and G S Pogosyan.
J. Math. Phys. 43(7) (2002) 3592-3609.
(IMA preprint 1846)
9. Superintegrability in a two-dimensional space of non-constant curvature.
E G Kalnins, J M Kress, P Winternitz.
J. Math. Phys. 43(2) (2002) 970-983.
(arXiv:math-ph/0108015)
8. The Evolution of Trailing Plumes from Active Regions.
C J Durrant, J M Kress and P R Wilson.
Sol. Phys. 201(1) (2001) 57-69.
7. Completeness of Multiseparable Superintegrability in Two-Dimensional Constant Curvature Spaces.
E G Kalnins, J M Kress, G S Pogosyan and W Miller Jr.
J. Phys. A: Math. Gen. 34 (2001) 4705-4720
(arXiv:math-ph/0102006 or IMA preprint 1739)
6. Simulations of the Polar Field Reversals during Cycle 22.
H B Snodgrass, J M Kress, P R Wilson.
Sol. Phys. 194(1) (2000) 1-17.
5. Observations of the Polar Field Reversals during Cycle 22.
H B Snodgrass, J M Kress, P R Wilson.
Sol. Phys. 191(1) (2000) 1-19.
4. Evolution of Isolated Active Regions.
J M Kress and P R Wilson.
Sol. Phys. 189(1) (1999) 147-161.
3. Solutions of Penrose's equation.
E N Glass and Jonathan Kress.
J. Math. Phys. 40(1) (1999) 309-317.
(arXiv:gr-qc/9809074)
2. Debye Potentials for Maxwell and Dirac Fields from a Generalisation of the Killing-Yano Equation.
I M Benn, Philip Charlton and Jonathan Kress.
J. Math. Phys. 38(9) (1997) 4504-4527.
(arXiv:gr-qc/9610037)
1. Force-free fields from Hertz potentials.
I M Benn and Jonathan Kress.
J. Phys. A: Math. Gen. 29 (1996) 6295-6304.

PhD thesis

Generalised Conformal Killing-Yano Tensors: Applications to Electrodynamics.
Jonathan Kress. PhD thesis, the University of Newcastle, Australia, November 1997.

Poster

Generalised Conformal Killing-Yano Tensors and Symmetry Operators for Massless Fields.
Jonathan Kress. Poster presented at the 18th Texas Symposium on Relativistic Astrophysics, December 15-20 1996.


Return to my homepage or my PhD thesis.