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Abstract
Recently, many papers have begun to consider so-called non-Quispel−Roberts
−Thompson (QRT) birational maps of the plane. Compared to the QRT family
of maps which preserve each biquadratic curve in a fibration of the plane, non-
QRT maps send a biquadratic curve to another biquadratic curve belonging to
the same fibration or to a biquadratic curve from a different fibration of the
plane. In this communication, we give the general form of a birational map
derived from a difference equation that sends a biquadratic curve to another.
The necessary and sufficient condition for such a map to exist is that the
discriminants of the two biquadratic curves are the same (and hence so are the
j-invariants). The result allows existing examples in the literature to be better
understood and allows some statements to be made concerning their
generality.

Keywords: integrable map, QRT map, biquadratic curve, elliptic fibration

1. Introduction

This communication concerns generalizations of discrete integrable systems in the form of
integrable maps of the plane that have received a lot of attention in the recent literature. We
consider birational maps ↦ ′ ′M x y x y: ( , ) ( , ) of the form

′ = ′ =M x y y R x y: , ( , ). (1)
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Such maps arise naturally from second order difference equations

=+ −z R z z( , ) (2)n n n1 1

with the identification = −x y z z( , ) : ( , )n n1 and ′ ′ = +x y z z( , ) : ( , )n n 1 . Conversely, the
identification can be used to rewrite any map of the form M as the difference equation (2).
We are particularly interested in maps of the form (1) that send a one-parameter family of
biquadratic curves =B x y t( , ; ) 0 (the source family) to another such family τ′ =B x y( , ; ) 0
(the target family), where

α α β β δ δ

γ γ κ κ ϵ ϵ

ζ ζ λ λ μ μ

= + + + + +

+ + + + + +

+ + + + + + =

( )

( )
( )

( )

( ) ( )

B x y t t x y t x y t xy

t x t y t xy

t x t y t

( , ; ) : ( )

( ) ( )

0. (3)

0 1
2 2

0 1
2

0 1
2

0 1
2

0 1
2

0 1

0 1 0 1 0 1

So the coefficients in B x y t( , ; ) are affine functions of the parameter t and τ′ =B x y( , ; ) 0 has
primed versions of the coefficients and is affine in the parameter τ. We are interested in maps

τ= ⇒ ′ ′ ′ =M B x y t B x y: ( , ; ) 0 ( , ; ) 0. (4)

The affine dependence on t and τ means that each family of curves B = 0 and ′ =B 0 is a
fibration of the plane (if there are no base points of the fibration, which all fibres pass through,
then the family is a foliation of the plane). Birational maps acting on fibrations is a well-
studied topic in algebraic geometry [2]. For generic values of t, the biquadratic curve (3) is an
elliptic curve [3].

One possibility in (4) is that ′ =B B and τ = t and M preserves the family, mapping each
curve of the fibration B = 0 to itself. A paradigm example of this is the so-called symmetric
Quispel−Roberts−Thompson (QRT) map MQRT [15] that preserves each curve of the family
(3) when it is symmetric under interchange of x and y, i.e.

= ⇒ ′ ′ =M B x y t B x y t: ( , ; ) 0 ( , ; ) 0QRT sym sym . Since B is affine in t, B = 0 can be solved for
t to give t x y( , ), a ratio of biquadratics, which is an integral of the dynamics as

= ′ ′t x y t x y( , ) ( , ) [15].
In recent years, there has been a great interest in the case when the family ′ =B 0 is not

the same as the family B = 0 and many examples of the form M have been presented (some
authors have called these ‘non-QRT’ maps [11, 12]). These examples fall into two categories,
which we label the intrafibration case and the interfibration case4.

In the intrafibration case,M sends a biquadratic curve labelled t in (3) to a different one in
the same family, labelled τ = ≠f t t( ) , so

τ= ⇒ ′ ′ =M B x y t B x y: ( , ; ) 0 ( , ; ) 0. (5)

Repeated application of M induces an action on the parameter space of the family, necessarily
a finite order action when the curve is elliptic [3, 13].

Example 1. Kassotakis and Joshi [12] give an example when (3) is symmetric in x and y, so
δ β=i i, κ γ=i i, λ ζ=i i =i( 0, 1). With the remaining parameters satisfying:

α α ϵ β β α ζ β γ γ β ζ γ ϵ= − = − = −( ), 2 , , (6)1 0 0 0
2

1 0 0 0 0 1 0 0 0 0

4 We point out that this division, whilst convenient to reference the examples in the literature, is artificial because an
intrafamily case becomes an instance of the interfamily case under the process of parameter interchange outlined
in [9].
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ϵ α μ γ ζ β μ γ ζ μ ϵ μ ζ= − = − = −( ) ( )4 , 2 , . (7)1 0 0 0
2

1 0 0 0 0 1 0 0 0
2

then (5) is achieved with τ = −t by the map

γ ζ μ β ϵ ζ

β ϵ ζ α β γ
′ = ′ = −

+ + + + +

+ + + + +

( ) ( )
( ) ( )

M x y y
y y x y y

y y x y y
: ,

2

2
. (8)KJ

0
2

0 0 0
2

0 0

0
2

0 0 0
2

0 0

Hence MKJ
2 preserves each curve of the family. Equivalently, it is said that =B x y t( , , ) 0

solved for =t t x y( , ) provides a two-integral for MKJ since ″ ″ = − ′ ′ =t x y t x y t x y( , ) ( , ) ( , ).
The study of so-called alternating maps and k-integrals in the literature pertains to the
intrafibration case [6, 7, 11, 12, 19].

In the interfibration case, a map of the form (1) sends a biquadratic curve of the form (3)
with parameter ti to a biquadratic curve with parameter +ti 1 in a different biquadratic family:

= ⇒ ′ ′ =+ +( )M B x y t B x y t: ( , ; ) 0 , ; 0. (9)i i i i i1 1

Examples in the literature have included cases where there is a finite sequence of p
biquadratic families = = …B x y t i p( ( , ; ) 0, 1, , )i i and a finite sequence of p maps

= …M i p( , 1, , )i , such that ◦ … ◦M M Mp 2 1 returns the original biquadratic family B1 to
itself. The alternating integrable maps of [14] provide an illustration of this with p = 2; for
p = 3 see [8]. One avenue to the periodic families of biquadratics and associated maps of [17]
and [5] was the prior studies of discrete Painlevé equations (see also [16]).

Example 2. An example of (9) with p = 15 is given in [4]:

′ = ′ =
+
+

M x y y
x

a y b

e y d
: ,

1
, (10)i

i i

i

with

= + + +

+ + +

+ + + +
+ −

+ + + + + + + +

+ + − + − +

+ + + − − + − −

− +

( ) ( )
( ) ( )
( ) ( )

B x y t ed b x y d d b ea b xy a d b y

d d b ea b x y a d b x

d b b a a b y d b b a a b x

a b b t xy

( , ; )

. (11)

i i i i i i i i i i i

i i i i i i i i

i i i i i i i i i i i i

i i i

1 2
2 2

1 2 3 2
2

2 3
2

1 2 1 1
2

1 1
2

2 3 1 1 1 1 1 2

2 2

Here bi is a sequence of period 5 ( =+b bi i5 ), di of period 3 ( =+d di i3 ), e is an arbitrary
constant with = + +ea d di i i1 2 and = =+t t ti i 1 . A special case of (10) with period 5 was
studied in Ramani et al [17]:

′ = ′ =
+
−

⩽ ⩽M x y y
x

y b

y
i: ,

1

1
, 1 5. (12)i

i

Our aim here is to ask when can a map of the form (1) sends a biquadratic curve to
another, under what conditions on the two curves can this occur and what form does the
resulting map M take (including what is the simplest form it can take)? By considering
biquadratics over a function field, we cover the same questions addressed to fibrations like
(4). Theorem 3 below answers these questions and explains the form of the many examples in
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the recent literature. It is well-known that the so-called j-invariant of two elliptic curves
mapped birationally to each other is preserved and a discriminantal condition is given in
theorem 3 that implies preservation of the j-invariant. In effect, theorem 3 provides the
generalisaton of the symmetric QRT map to the case that the source and target biquadratics
are not the same.

Theorem 3 has some consequences that we explore in section 3. It allows us to see that
sometimes the examples given in the literature are not the simplest way to map between the
biquadratic curves. It also allows us to systematically approach questions like what is the
most general intrafibration map for various scenarios (see proposition 4).

2. Characterizing theorem

The image of an algebraic curve under a birational map will also be an algebraic curve. The
problem becomes more restrictive if we require the source and target curves to be of the same
type—here we impose that they are both biquadratic curves—and fix the type of birational
map that transforms one curve to the other—here we impose the form M of (1). Already, one
sees some ambiguity in the answer (as we will see below) because if there exists an M that
sends biquadratic B = 0 to biquadratic ′ =B 0, then

′ ◦ ◦MAuto Auto (13)

is another such mapping if Auto (Auto′) is a birational automorphism of B (B′) and the
composition (13) is also of the form (1).

Let =B x y( , ) 0 and ′ =B x y( , ) 0 be the equations for two biquadratic curves which will
be denoted

α β δ γ ϵ κ ζ λ μ= + + + + + + + +B x y x y x y xy x xy y x y( , ) (14)2 2 2 2 2 2

and

α β δ γ ϵ κ ζ λ μ′ = ′ + ′ + ′ + ′ + ′ + ′ + ′ + ′ + ′B x y x y x y xy x xy y x y( , ) . (15)2 2 2 2 2 2

We consider x, y to belong to some field K. The entries of the vector of curve parameters
α β μ…( , , , ) and their primed counterparts can be in K, or more generally in the rational
function field K(t). The latter case means curve parameters are a rational function of some
parameter t, i.e. α α= t( ) etc so the biquadratic curve over the function field represents a
family of curves in K2 as we let t vary across some field K (in our previous work [9], we used
the term curve-dependent maps to refer to maps sending biquadratics over rational function
fields to themselves, see also [10]). Here we take = K or = K . Recall the notation for the
multiplicative group = ⧹K K* {0}.

By definition, a biquadratic expression can be written as a quadratic in x or in y, so we
can write

= + +
= + + =

B x y X x y X x y X x

Y y x Y y x Y y

( , ) ( ) ( ) ( )

( ) ( ) ( ) 0, (16)

2
2

1 0

2
2

1 0

where

α δ κ β ϵ λ γ ζ μ
α β γ δ ϵ ζ κ λ μ

= + + = + + = + +
= + + = + + = + +

X x x x X x x x X x x x

Y y y y Y y y y Y y y y

( ) , ( ) , ( ) ,

( ) , ( ) , ( ) . (17)

2
2

1
2

0
2

2
2

1
2

0
2

We shall denote the discriminant of the quadratic B with respect to y, which is a polynomial in
x, by Δ B x( )( )y :
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Δ

β αγ βϵ αζ δγ βλ ϵ δζ γκ αμ

ϵλ κζ δμ λ κμ

= −

= − + − − + + − + +

+ − − + −

( )
( )

B x X x X x X x

x x x

x

( )( ) ( ) 4 ( ) ( )

4 (2 4 4 ) 2 4( )

(2 4 4 ) 4 . (18)

y 1
2

0 2

2 4 3 2 2

2

⎡⎣ ⎤⎦

Similarly, we use Δ B y( )( )x to denote the polynomial in y that is the discriminant of the
quadratic B with respect to x:

Δ

δ ακ δϵ αλ βκ δζ ϵ βλ γκ αμ

ϵζ γλ βμ ζ γμ

= −

= − + − − + + − + +

+ − − + −

( )
( )

B y Y y Y y Y y

y y y

y

( )( ) ( ) 4 ( ) ( )

4 (2 4 4 ) 2 4( )

(2 4 4 ) 4 . (19)

x 1
2

0 2

2 4 3 2 2

2

⎡⎣ ⎤⎦

To guarantee that both discriminants are genuine quartics, we make the following:

Assumption. The leading coefficients β αγ− 42 and δ ακ− 42 of Δ B x( )( )y , respectively
Δ B y( )( )x , are non-zero.

As quartic polynomials, Δ B x( )( )y and Δ B y( )( )x each have their own discriminants,
expressible in terms of their coefficients, which vanish if and only if the quartics have a
repeated root over their splitting field. It turns out that these discriminants are one and the
same expression for each quartic, which we denote Δ B( )xy . We call the biquadratic non-
singular when Δ ≠B( ) 0xy . This means that Δ B( )y and Δ B( )x can then only have simple
roots. It also means that the biquadratic curve B = 0 is a non-singular elliptic curve, trans-
ferrable to Weierstrass cubic form = + +W Y X W X W: 2 3

1 0 with discriminant
Δ Δ= ≠W B( ) ( ) 256 0xy [3, 13].

Analogous expressions to (17)–(19) can be written for the biquadratic ′ =B x y( , ) 0 given
by

′ = ′ + ′ + ′

= ′ + ′ + ′ =
B x y X x y X x y X x

Y y x Y y x Y y

( , ) ( ) ( ) ( )

( ) ( ) ( ) 0, (20)

2
2

1 0

2
2

1 0

and its discriminants. One simple way to send the biquadratic B x y( , ) to the particular case of
′ = =B x y B y x( , ) ( , ) 0 is to use the switch

′ = ′ =S x y y x: , , (21)

since ′ = ◦B B S. We remark that the effect of the switch S of (21) on the biquadratic is to
switch the coefficients of the respective discriminants, i.e.

Δ Δ Δ Δ◦ = ◦ =B S y B y B S x B x( )( ) ( )( ), ( )( ) ( )( ). (22)y x x y

Furthermore, any map of the form M of (1) can be written

= ◦M P S, (23)x

where Px fixes x:

′ = ′ =P x x y R y x: , ( , ). (24)x

Lemma 1. The map M sends =B x y( , ) 0 to ′ =B x y( , ) 0 if and only if Px sends =B y x( , ) 0
to ′ =B x y( , ) 0.
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Proof. Suppose M sends =B x y( , ) 0 to ′ =B x y( , ) 0. Since S sends =B x y( , ) 0 to the
biquadratic =B y x( , ) 0 and M can be decomposed as (23), it follows that Px sends

=B y x( , ) 0 to ′ =B x y( , ) 0. Conversely, if = ◦P M Sx sends =B y x( , ) 0 to ′ =B x y( , ) 0,
then since S sends =B x y( , ) 0 to =B y x( , ) 0, = ◦M P Sx sends =B x y( , ) 0 to

′ =B x y( , ) 0. □

Provided ≠X 02 in (17), which excludes possibly two points on the curve

Δ
= ⇔ + − =B x y y

X x

X x

B x

X x
( , ) 0

( )

2 ( )

( )( )

4 ( )
0. (25)

y1

2

2

2
2

⎛
⎝⎜

⎞
⎠⎟

Similarly, provided ′ ≠X 02 in (20), which excludes possibly two points on the curve

Δ
′ = ⇔ +

′
′

−
′

′
=B x y y

X x

X x

B x

X x
( , ) 0

( )

2 ( )

( )( )

4 ( )
0. (26)

y1

2

2

2
2

⎛
⎝⎜

⎞
⎠⎟

Observe = ⇔ ′ ′ =B x y B x y( , ) 0 ( , ) 0 when y′ and y are related by

Δ
Δ

′ +
′
′

= ±
′

′
+±P y

X x

X x

B x

B x

X x

X x
y

X x

X x
:

( )

2 ( )

( )( )

( )( )

( )

( )

( )

2 ( )
. (27)x

y

y

1

2

2

2

1

2

⎛
⎝⎜

⎞
⎠⎟

Note the subscript ‘x’ in ±Px is used to show each choice of sign is a transformation
↦ ′ ′x y x y( , ) ( , ) that fixes x. Recall that there are the well-known involutions Ix and ′Ix [15]

which fix x and switch the roots in y for, respectively, =B x y( , ) 0 and ′ =B x y( , ) 0:

′ = − − ⇔ ′ + = − +I y y
X x

X x
y

X x

X x
y

X x

X x
:

( )

( )

( )

2 ( )

( )

2 ( )
(28)x

1

2

1

2

1

2

⎛
⎝⎜

⎞
⎠⎟

and

′ ′ = − −
′
′

⇔ ′ +
′
′

= − +
′
′

I y y
X x

X x
y

X x

X x
y

X x

X x
:

( )

( )

( )

2 ( )

( )

2 ( )
. (29)x

1

2

1

2

1

2

⎛
⎝⎜

⎞
⎠⎟

Note that Ix ( ′Ix) can be taken to be the representative non-identity (birational) curve
automorphism fixing x and preserving B = 0 ( ′ =B 0), and we see that ±Px becomes Ix or the
identity when ′ ≡B B. Of course, Ix ( ′Ix) is the asymmetric QRT involution on B = 0 ( ′ =B 0)
and the QRT map follows from the composition of Ix and = ◦ ◦I S I Sy x , the corresponding
automorphism on B = 0 with y fixed.

In general, ±Px are maps between the biquadratic curves defined over  due to the
presence of the square root of a polynomial being required. The following result gives
conditions for the birationality of ±Px and establishes their generality.

Theorem 2. Let B = 0 be a nonsingular biquadratic curve over the field . There exists a
birational map P over 2 fixing x and sending B = 0 to the biquadratic ′ =B 0 if and only if

Δ Δ′ = ∈ = ⧹ B x c B x c( )( ) ( )( ), * {0}. (30)y y
2

The biquadratic ′ =B 0 is also nonsingular and, modulo equivalence on B = 0, the map P
can be chosen to be ±Px above, i.e. either of the maps
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′ = ′ = ±
′

+
± − ′

′
±P x x y

c X x

X x
y

c X x X x

X x
: ,

( )

( )

( ) ( )

2 ( )
.x

2

2

1 1

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

The two maps are not independent since:

◦ = ′ ◦ = ⇒ ′ ◦ ◦ =± ∓ ± ∓ ± ±P I P I P P I P I Pand (31)x x x x x x x x x x

with Ix and ′Ix of , respectively, (28) and (29).

Proof. Denote the roots of the quadratic (25) in y by

Δ
= =

− ±
±y r x

X B

X
( )

( )

2
, (32)

y1

2

and similarly for the quadratic (26)

Δ
= =

− ′ ± ′

′±y R x
X B

X
( )

( )

2
. (33)

y1

2

For each fixed x, we want to invertibly map the set of roots = + −y r r{ , } to ′ = + −y R R{ , },
giving one possibility where the parity of the sign labels is preserved and a second possibility
where they are switched. We require y′ to be a rational function of y with coefficients rational
in x, and likewise for the inverse map taking y′ to y. Since quadratic (and higher) terms in y
and y′ in these maps can always be removed using the equations of the biquadratics (25) and
(26), the map P from y to y′ can be taken necessarily to be a Möbius or fractional linear
transformation

Λ Σ
Ω Γ

Λ Λ Σ Σ Ω Ω Γ Γ′ = +
+

= = = =P y
y

y
x x x x: , ( ), ( ), ( ), ( ). (34)

Möbius transformations constitute the group of birational maps of the projective line. Without
loss of generality, we can study the case

= =+ + − −P r R P r R( ) , ( ) , (35)

since the case with the right-hand sides interchanged is given by ′ ◦I Px . Any solution for the
map P will satisfy

◦ = ′ ◦P I I P, (36)x x

with Ix of (28) and ′Ix of (29). Imposing (35) on P of (34) gives two linear equations which can
be solved for

Λ
Ω Γ Ω Γ

Σ
Ω Γ Ω Γ

=
+ − +

−

=
+ − +

−

+ + − −

+ −

+ − − − + +

+ −

( )

( )

( )

( )

R r R r

r r

r R r r R r

r r

,

, (37)

with Ω and Γ free. If Ω = 0, then Γ cancels in P and we have the affine map:

′ =
−
−

+
−
−

+ −

+ −

+ − − +

+ −
P y

R R

r r
y

r R r R

r r
: . (38)0

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

If Ω ≠ 0, we can take Ω = 1 without loss of generality in (37) and (34) together with Γ free.
This gives a genuine fractional linear transformation which we denote as P1. However, some
manipulation shows that P1 is equivalent to P0 modulo the biquadratic =B x y( , ) 0. In other
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words, one finds

− ≡ =( )( ) ( )P P P B· denominator numerator 0 mod 0 , (39)0 1 1

by replacing y2, +r
2 and −r 2 on the left-hand side using = = =+ −B x y B x r B x r( , ) ( , ) ( , ) 0.

We now simplify the form of P0 of (38) by using = − −− +r r X X1 2 and
= − − ′ ′− +R R X X1 2 and then substituting the definition of +r via (32) and +R via (33). We

readily find that P0 is
+Px of (27), whereas ◦ = ′ ◦ = −P I I P Px x x0 0 of (27), as expected. For ±Px

of (27) to be rational in x, and thus to be a birational map of 2, we require the ratio of the
quartic discriminants to be a perfect square in  x( ), i.e.

Δ
Δ

′
=

B x

B x

N x

D x

( )( )

( )( )

( )

( )
, (40)

y

y

2

2

where N(x) and D(x) are relatively prime polynomials. However, this implies that any root of
N(x), if N(x) is non-constant, is at least a double root of Δ ′B( )y and any root of D(x), if D(x) is
non-constant, is at least a double root of Δ B( )y . By assumption =B x y( , ) 0 and ′ =B x y( , ) 0
are non-singular curves with Δ ≠B( ) 0xy and Δ ′ ≠B( ) 0xy , respectively, so their discriminants
do not have multiple roots. Consequently, N(x) and D(x) must be constants so that Δ ′B x( )( )y

and Δ B x( )( )y differ by a constant, which must be a positive constant in the real case.
Substituting this into (27) gives the forms advertised in the statement of the theorem. In
particular, in the real case, the quartics Δ ′B x( )( )y and Δ B x( )( )y are positive in the same x-
intervals, so that =B x y( , ) 0 and ′ =B x y( , ) 0 occupy the same real domains in x.

This shows that a birational map from B = 0 to ′ =B 0 exists only if the curve
discriminants obey (30) and it then takes the form ±Px . Conversely, if the curve discriminants
satisfy (30), ±Px constitute birational maps between them. □

Remarks.

(1) Note that =c B x y( , ) 0 for ∈c K* defines the same curve as =B x y( , ) 0, so two
biquadratics are equivalent if the ratio of their corresponding coefficients is the same
constant, or their vectors of parameters are parallel. Since Δ Δ=cB c B( ) ( )x x

2 and
Δ Δ=cB c B( ) ( )y y

2 , the discriminants of a biquadratic curve are defined up to their
multiplication by c2. This means that if the curve parameters are real constants, one of the
quartic discriminants can always be taken to have leading coefficient ±1; if the curve is
over , one of the discriminants can be taken to be monic. If (30) is satisfied, we can
always replace B = 0 by the equivalent biquadratic =cB 0, in which case c can be taken
to be 1. So the theorem could alternatively be stated in terms of birational maps between
equivalence classes of biquadratics, in which case c = 1 without loss of generality. But
practically speaking, when dealing with biquadratics, as presented, it is useful to retain
the ‘up to a multiplicative constant’ freedom of (30).

(2) The conditions of the theorem arising from (30) are that the ratios of corresponding
coefficients of the two quartic discriminants are the same. We make this more explicit in
theorem 3 below.

(3) Equation (31) illustrates (13), noting also that the identity on each curve is an obvious
automorphism. It shows that the two x-preserving transformations ±Px from the
biquadratic B = 0 to the biquadratic ′ =B 0 are related to each other via the
automorphisms Ix and ′Ix but are a closed set of transformations between the curves up to
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these root-switching freedoms. The requirement that x is fixed, restricts the possibilities.
The reason we list both +Px and −Px is that one of them may have a simpler form than the
other in a particular example, and so is the more fundamental way to move between the
curves.

Example 3. Here are some simple maps that fix x and obviously map the biquadratic (16) to
the biquadratic (20), leading to (30) being satisfied (cases (a) and (b) are included to illustrate
remark (1) above).

(a) ′ = ∈ ⇒ ′ = ′ = ′ =y Ey E K X x X x E X x X x E X x X x( *) ( ) ( ) , ( ) ( ) , ( ) ( )2 2
2

1 1 0 0 so
=c E1 .

(b) ′ = ∈ ⇒ ′ = ′ = ′ =y Ey E K X x X x E X x X x X x E X x( *) ( ) ( ) , ( ) ( ), ( ) ( )2 2 1 1 0 0

so c = 1.
(c) ′ = ⇒ ′ = ′ = ′ =y y X x X x X x X x X x X x1 ( ) ( ), ( ) ( ), ( ) ( )2 0 1 1 0 2 so c = 1.

We observe that the maps in (a)–(b) correspond to the form +Px . The map in (c) is not
affine in y but on B = 0 we have

≡ − −y
X x

X x
y

X x

X x
1

( )

( )

( )

( )
,2

0

1

0

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

which is −Px as here ′ =X x X x( ) ( )2 0 . In this example, +Px is ′ = ( )y y
X x

X x

( )

( )
2

0
and one confirms

that this also sends (16) to the biquadratic (20) in this case.

To build more exotic examples of birational maps that send biquadratics to biquadratics
but do not fix x, we can involve the switch S. We know that the switch S exchanges x and y in
B = 0. In the process, this leads to Xi(x) for B = 0 being the same as Yi(x) for ◦ =B S 0 and
vice versa. The discriminant changes according to (22). Via lemma 1 and theorem 2, we
then have:

Theorem 3. There exists a birational map M of the form (1) over 2 sending the
nonsingular biquadratic B = 0 to the nonsingular biquadratic ′ =B 0 if and only if

Δ Δ Δ′ = ◦ =B x c B S x c B x( )( ) ( )( ) ( )( ), (41)y y x
2 2

with ∈ c *. Hence from (19)

Δ

Δ

Δ

Δ′
=

+

′ +
=[ ] [ ]B y i

B x i

B y i

B x i
i

Coeff ( )( ),

Coeff ( )( ),

Coeff ( )( ), 1

Coeff ( )( ), 1
, 0, 1, 2, 3, (42)

x

y

x

y
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

where Δ B y iCoeff[ ( )( ), ]x is the coefficient of yi in Δ B y( )( )x of (19) and Δ ′B x iCoeff[ ( )( ), ]y is
the coefficient of xi in the primed version of Δ B x( )( )y of (18). Modulo equivalence on B = 0,
and noting (16) and (20), the map M is either of

′ = ′ = ±
′

+
± − ′

′
±M x y y

c Y y

X y
x

c Y y X y

X y
: ,

( )

( )

( ) ( )

2 ( )
.2

2

1 1

2

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

The two maps are related by

◦ = ′ ◦ = ⇒ ′ ◦ ◦ =± ∓ ± ∓ ± ±M I M I M M I M I Mand (43)y x x y

with Ix and ′Ix of, respectively, (28) and (29) and = ◦ ◦I S I Sy x .
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We finish this section with the following

Remarks.

(1) Our main interest is the case of fibrations of biquadratic curves as exemplified by the
examples in the Introduction. Each fibration is an elliptic curve over the function field.
theorem 3 holds in this case as well, as the arguments of the proof of theorem 2 hold. The
parameters in the biquadratics (25) and (26) are now taken to be affine in their respective
fibration parameters t and τ (the intrafibration case of (5)) or ti and +ti 1 (the interfibration
case of (9)). This follows through to the associated discriminants being quadratic in their
respective fibration parameters so that (42) represents four conditions linking the fibration
parameters of source and target biquadratics. The maps ±M notionally depend on the
respective fibration parameters, but the parameters can be eliminated using the equation
of the biquadatric in each case. In the fibration case, we can always reparametrize the
fibration parameter in a source or target biquadratic by a Möbius transformation ′ ↦T t t:

= ′ +
′ +

T t
At E

Ct D
: , (44)

which transforms (3) to another fibration, affine in t′. Such reparametrization is actually
encompassed by our theorems as we can take ′ ′ = ′ + ′ =B x y t Ct D B x y T t( , , ) ( ) ( , , ( )) 0,
in which case (30) is satisfied with = ′ +c Ct D( ) and +Px of theorem 2 becomes the
identity and −Px the QRT involution Ix of (28). Conversely, to test if two biquadratics

′ ′ =B x y t( , , ) 0 and =B x y t( , , ) 0 are related by a reparametrization, one must have that
equality of their coefficient ratios α α β β μ μ′ ′ = ′ ′ = … = ′ ′t t t t t t( ) ( ) ( ) ( ) ( ) ( ) leads to one
and the same Möbius function for t′ in terms of t. It is clear this then gives =+P idx and
satisfaction of (30).

(2) The form of ±M is invariant under multiplication of B and B′ by (possibly different)
constants, relating to remark (1) after theorem 2. When we take ′ =B B together with

=B x y B y x( , ) ( , ) in the theorem, we find that +M becomes the switch S of (21) and −M

becomes ◦I Sx , the symmetric McMillan map on the curve: ′ =x y, ′ = − −y x
X y

X y

( )

( )
1

2
(or

the curve-dependent-McMillan version of the symmetric QRT map if the curve is a
fibration [9]).

(3) The j-invariant of the biquadratic B is given by

= = −
−

j B j W
I

I J
( ) ( )

1728

27
. (45)

3

3 2

The quantities I and J are the (Eisenstein) invariants [3, 13] expressed in the coefficients
of the quartics Δ B( )y or Δ B( )x —they are the same in each case. The condition (41)

ensures that the corresponding invariants for B′ satisfy ′ =I c I4 and ′ =J c J6 so that
′ =j B j B( ) ( ). As it must be, theorem 3 is consistent with the well-known fact from

algebraic geometry that if elliptic curves share the same j-invariant, then there is a
birational map between them and vice versa.
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3. Examples and applications

Note that the condition (41) says

′ − ′ ′ = −X x X x X x c Y x Y x Y x( ) 4 ( ) ( ) ( ) 4 ( ) ( ) . (46)1
2

0 2
2

1
2

0 2
⎡⎣ ⎤⎦

Example 4. One simple way to satisfy (46) is for ϵ′ =X x c Y x( ) ( )1 1 with ϵ = ±1 and also

′ ′ =X x X x c Y x Y x( ) ( ) ( ) ( ). (47)0 2
2

0 2

The latter condition implies, for instance if ′ ≠X x( ) 00 , that

′ =
′

X x
c Y x Y x

X x
( )

( ) ( )

( )
. (48)2

2
0 2

0

Since all the functions involved are polynomials of maximal degree 2, we see that there must
be the divisibililty ′ ∣X x Y x Y x( ) ( ) ( )0 0 2 . From theorem 3, we have:

ϵ′ = ′ =
′

ϵM x y y
c Y y

X y
x: ,

( )

( )
. (49)2

2

⎛
⎝⎜

⎞
⎠⎟

It turns out that many cases we have checked in the literature, e.g. [1, 4, 19], follow the
form of the previous example. However, sometimes the birational maps advertised in the
literature are not of the form (49), appearing more complicated because they take the alter-
native form offered by theorem 3, the two forms related via the relations (43) (the alternative
forms might be said to borrow some of their non-QRT features from the associated
QRT map).

For instance, using unprimed coefficient functions for Bi and primed coefficient functions
for +Bi 1 of (11), we have: ′ =X x Y x( ) ( )1 1 = + −+ + + +d d b ea b x[ ]n n n n n1 2 3 2

2

+ +− + − −tx d b b b a a ;n n n n n n1 1 1 2 = +Y x e x d( ) ( )n2 + =+ + − +d b x a b Y x( ); ( )n n n n1 2 1 1 0

+ + ′ =+ + + −a x b d b x a b X x( )( ); ( )n n n n n n2 3 1 1 2 ++ e x d( )
d

e n
n 2 ++ +e b x d b( );n n n3 4 ′ =X x( )0

+a x b( )n n ++ + − +d b x a b( )n n n n1 2 1 1 . Note how the factorizations (47) and (48) are achieved
with =c 12 . The discriminants of Bi and +Bi 1 are equal. We then find that the map presented
by [4] is −M of theorem 3. On the other hand, +M follows from (49) with ϵ = =c 1 as:

′ = ′ =
+
+

+ +

−

+ +

− −
M x y y

d

d

e b y d b

e b y d b
x: , , (50)i

n

n

n n n

n n n

1

1

2 1

2 1

⎛
⎝⎜

⎞
⎠⎟

recalling the periodicities of dn (i.e. 3) and bn (i.e. 5) and noting =− +a d d en n n1 1 .
Finally, we point out that the use of the discriminant enables us to make general state-

ments about the possibility to have intrafibration mappings, their orders and their forms. We
call the fibration (3) symmetric when =B x y t B y x t( , ; ) ( , ; ), so
δ β κ γ λ ζ= = = =i{ , , ; 0, 1}i i i i i i . We say the fibration (3) is generalized McMillan when
the only non-zero coefficient of t is μ1; otherwise, we call it a QRT fibration.

Proposition 4. Consider the fibration = =B B x y t: ( , ; ) 0t of (3) and maps of the form P of
(24) or M of (1) that preserve the fibration (e.g. as in (5)). Using theorems 2 and 3, we have:

(1) When the fibration is generalized McMillan and symmetric, maps of the form P or M
necessarily preserve each fibre.
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(2) When the fibration is QRT, the possible intrafibration period for a map P is necessarily 2
and we can take τ = −t , possibly after a Möbius reparametrization. The map +P of
theorem 2 is then ◦ ◦S h S1 where h1 is from proposition 4.1 of [12].

(3) When the fibration is QRT and symmetric, the possible intrafibration period for a map M
is necessarily 2 and we can take τ = −t , possibly after a Möbius reparametrization. The
map +M of theorem 3 is then MKJ of (8).

Proof. If the fibration Bt is symmetric in x and y and preserved by M, as in cases (1) and (3),
this is equivalent to the fibration being preserved by P using (23). The condition follows from
(30), giving a modification of (42) with Δ B x( )( )y t now in the numerators of (42) and
Δ Δ′ = τB x B x( )( ) ( )( )y y in the denominators, i.e. the corresponding numerators and
denominators differ by the replacement τ↦t giving

Δ

Δ

Δ

Δ
=

+

+
=

τ τ

( )
( )

( )
( )

B x i

B x i

B x i

B x i
i

Coeff ( ),

Coeff ( ),

Coeff ( ), 1

Coeff ( ), 1
, 0, 1, 2, 3. (51)

y t

y

y t

y

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

This is also the condition for an asymmetric Bt to be preserved by a map of form P, as in case
(2) of the proposition. From (19), the numerators (denominators) in (51) are generally
quadratic in t (τ) because they appear linearly in (3) so that cross-multiplying in each of the
four conditions produces polynomial conditions

τ = =Q t i( , ) 0, 0, 1, 2, 3,i

that are most generally quadratic in t and τ and antisymmetric in them. One solution in each
case is clearly τ = t , corresponding to the existence of Ix that preserves each fibre. Factoring
out τ−t( ) from the left-hand side of τ =Q t( , ) 0i results in four equations, most generally
affine in t and τ and symmetric in them:

+ + + = =A T t B Tt C i( ) 0, 0, 1, 2, 3. (52)i i i

For preservation of the fibration, these four conditions need to be consistent, which defines
relations between the parameters in Bt. When this occurs, one sees the symmetry means that
the map τ↦t is necessarily an involution (order 2) map in the fibration parameter space. But
Möbius involutions are conjugate within the group of (real or complex, as the case may be)
Möbius transformations to τ = −t . This provides the intrafibration period of 2 in (2) and (3).
The form of the P in (2) and hence the M in (3) follows from [12] which solves when maps of
this type change the sign of the fibration parameter (or integral). For case (1), it is easy to
check that there are only three non-trivial conditions following from (51) and the coefficients
are maximally of degree one in τ and t. The assumption of section 2 that δ ακ− ≠4 02 forces
then τ = t so each fibre is preserved.

In closing, we remark that there are birational maps not of the form (1) that can, for
instance, achieve (5), e.g. see [18]. We are presently investigating how these maps might be
understood in a similar vein to the class given by (1).
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