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Abstract

Let X be a closed linear subspace of the Lebesgue space Lp(Ω, µ) for some 1 <

p < ∞, and let −A be an invertible operator that is the generator of a bounded

holomorphic semigroup Tt on X. Then for each 0 < α < 1 the maximal function

supt>0 |Ttf(x)| belongs to Lp(Ω, µ) for each f in the domain of Aα. If moreover

iA generates a bounded C0–group and A has spectrum contained in (0,∞), then

A has a bounded H∞ functional calculus.

1. Introduction and main result

Let Ω be a complete and separable metric space, and µ be a σ-finite and positive Radon
measure on Ω. Let X be a closed linear subspace of the Lebesgue space Lp(Ω;µ), where
1 < p < ∞. For a closed and densely defined linear operator A in X, we are concerned
with the Cauchy initial value problem for v(x, t) and initial datum f ∈ X,

∂v

∂t
= −Av, v(x, 0) = f(x), (t > 0;x ∈ Ω). (1.1)

This has a unique solution v(x, t) = Ttf(x) in the sense of Hille and Phillips [14, p. 622]
whenever Tt is a C0–semigroup on X with generator −A; one writes Tt = e−tA [14, p.
321]. In order to ensure that v(x, t) converges µ-almost everywhere to f(x) as t→ 0+, it
is often necesary to impose further conditions on f . For any closed linear operator V in
X, we recall that the domain of V is the Banach space D(V ) = {f ∈ X : V f ∈ X} with
the graph norm ‖f‖D(V ) = ‖f‖Lp + ‖V f‖Lp . For 0 < α < 1, we can define a fractional
power Aα such that D(Aα) contains D(A), and A−α is bounded whenever A has bounded
inverse; see [20, Theorem 2.3.1].

In many cases of interest, Tt extends to a bounded holomorphic semigroup on the
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sector Σθ = {z ∈ C \ {0} : | arg z| < θ} for some θ with 0 < θ ≤ π/2. We write argλ for

the principal value of the argument.

A bounded holomorphic semigroup [12, p. 59] on Σθ is a family of bounded linear

operators Tz on X for each z ∈ Σθ, that satisfies:–

(i) TzTζ = Tz+ζ for all z, ζ ∈ Σθ;

(ii) for each θ′ with 0 ≤ θ′ < θ there exists K(θ′) such that ‖Tz‖ ≤ K(θ′) for all z ∈ Σ̄θ′ ;

(iii) Tz is a holomorphic function of z ∈ Σθ;

(iv) Tzf → f for each f ∈ X as z → 0 with z ∈ Σθ.

THEOREM 1.1. Suppose that −A generates a bounded holomorphic semigroup Tz = e−zA

on Σθ for some θ with 0 < θ ≤ π/2. Suppose further that A is invertible and that

0 < α < 1. Then for each f ∈ D(Aα) the maximal function M(f(x)) = sup0<t<∞ |Ttf(x)|
belongs to Lp(Ω;µ); further, there exists K(A,α, p) independent of f such that∫

Ω

M(f(x))pµ(dx) ≤ K(A,α, p)
∫

Ω

(
|Aαf(x)|p + |A−αf(x)|p

)
µ(dx). (1.2)

If −A is the generator of a bounded holomorphic semigoup, then for each s > 0 the

operator −(sI +A) is invertible and also generates a bounded holomorphic semigroup; so

the invertibility assumption in Theorem 1.1 does not restrict the usefulness of the result.

In many examples there is a dense subspace Y of smooth functions such that Ttf(x) →
f(x) as t → 0+ holds µ-almost everywhere for f ∈ Y. One can then use the Theorem to

show by approximation that almost everywhere convergence holds for all f ∈ D(A−α) ∩
D(Aα). The hypotheses are easy to verify in applications. Whereas we do not claim that

the result is optimal in any particular case, it covers cases outwith the scope of the special

results of Stein [18, p. 65] for symmetric diffusion semigroups and the results that require

growth conditions on the imaginary powers Aiu as in [9,5,6].

The proof of Theorem 1.1 depends upon a functional calculus argument which we

present in section 2. This was suggested by the H∞ functional calculus of McIntosh and

his co-authors [15, 10], but we present a self-contained proof for the sake of completeness.

In section 3 we conclude the proof of the Theorem and in the final section 4 we consider

examples.

2. Functional calculus

In this section we work with the space of bounded linear operators on X with the operator

norm ‖ ‖. A closed and densely defined linear operator A is said to be sectorial of type ϕ
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if its spectrum is contained in Σ̄ϕ for some ϕ ∈ (0, π) and for each ω ∈ (ϕ, π) there exists
κ(ω) such that ‖λ(λI −A)−1‖ ≤ κ(ω) holds for all λ ∈ C \ Σ̄ω; see [10].

For the remainder of this section, we suppose that A is as in Theorem 1.1. By [12, p.
2] A is densely defined and closed. We recall from [13, p.44] that, for a Banach space Y ,
a function G : R → Y is Bochner–Lebesgue integrable if G is strongly measurable and if
‖G(x)‖Y is integrable.

LEMMA 2.1. Let 0 < θ′ < θ and let π/2− θ′ < ω < π/2.

(i) Then A is sectorial of type π/2 − θ′; so that, each λ 6= 0 with |argλ| ≥ ω lies in the

resolvent set of A and satisfies∥∥λ(λI −A)−1
∥∥ ≤ K(θ′)cosec(ω + θ′ − π/2). (2.1)

(ii) Similarly the Yosida approximants As = (sI + A)−1sA where s > 0 are sectorial of

type π/2− θ′; so that,

‖λ(λI −As)−1‖ ≤ (cosecω/2)
(
1 +K(θ′) cosec (ω + θ′ − π/2)

)
(2.2)

holds for each λ 6= 0 such that |argλ| ≥ ω.

Proof. (i) A standard estimate on the resolvent: one turns the line of integration in the
Bochner–Lebesgue integral [12, p. 61]

λ(λI −A)−1f = −
∫ ∞

0

λezλ−zAfdz (f ∈ X) (2.3)

so that π > |argλ + arg z| ≥ ω + θ′ > π/2 and then one bounds the integral using the
triangle inequality.

(ii) By (i), −s lies in the resolvent of A for each s > 0 and one can check that As is a
bounded linear operator which satisfies

λ(λI −As)−1 =
λ

λ− s
+

s

s− λ

λs

s− λ

( λs

s− λ
I −A

)−1

. (2.4)

The linear fractional transformation ϕ(λ) = λs/(s − λ) takes {λ 6= 0 : |argλ| ≥ ω} into
itself and by (2.4) we have

∥∥λ(λI −As)−1
∥∥ ≤ ∣∣∣ λ

λ− s

∣∣∣ +
s

|λ− s|
∥∥ϕ(λ)(ϕ(λ)I −A)−1

∥∥, (2.5)

and the stated result follows from (2.1) since |λ− s| ≥ (sinω/2)(|λ|+ s).
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For 0 < α < 1 we can define

A−αf =
sinπα
π

∫ ∞

0

t−α(tI +A)−1f dt (f ∈ X) (2.6)

and
Aαf =

sinπα
π

∫ ∞

0

tα−1A(tI +A)−1f dt (f ∈ D(A)). (2.7)

One can easily check that these integrals converge in the sense of Bochner–Lebesgue on
the stated linear subspaces as a consequence of Lemma 2.1.

We define the fractional power zα = exp(α log |z|+ iα arg z). Then for u ∈ R \ {0} we
introduce the functions

Φu(z) =
z1−α

u2 + z2
and Ψu(z) =

z1+α

u2 + z2
, (2.8)

which are holomorphic on {z : <z > 0}. The curve γ with parametric form

γ(t) = − te−iω, −∞ < t < 0;

teiω, 0 < t <∞ (2.9)

lies in the resolvent set of A by Lemma 2.1.

LEMMA 2.2. Let

K1 = 2−1K(θ′)cosec (ω + θ′ − π/2) cosecω sec(πα/2), (2.10)

K2 = 2−1
(
1 +K(θ′)cosec (ω + θ′ − π/2)

)
cosecω/2 cosecω sec(πα/2).

(i) Then the Bochner–Lebesgue integral

Φu(A) =
1

2πi

∫
γ

Φu(z)(zI −A)−1dz (2.11)

defines a bounded linear operator on X such that

‖Φu(A)‖ ≤ K1|u|−1−α (u ∈ R \ {0}). (2.12)

Likewise Φu(As) may be defined by such an integral to give a bounded linear operator

such that ‖Φu(As)‖ ≤ K2|u|−1−α for all u ∈ R \ {0}.
(ii) Similarly the Bochner–Lebesgue integral

Ψu(A) =
1

2πi

∫
γ

Ψu(z)(zI −A)−1dz
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defines a bounded linear operator on X such that

‖Ψu(A)‖ ≤ K1|u|−1+α (u ∈ R \ {0}). (2.13)

Likewise Ψu(As) may be defined by such an integral to give a bounded linear operator

such that ‖Ψu(As)‖ ≤ K2|u|−1+α for all u ∈ R \ {0}.
(iii) The above definitions of Φu(As) and Ψu(As) are consistent with the Riesz functional

calculus for bounded operators.

(iv) For all f ∈ X,

Φu(As)f → Φu(A)f and Ψu(As)f → Ψu(A)f as s→∞.

Proof. (i) We shall verify that the integral is absolutely convergent. The integrand is

continuous in B(X), hence is measurable in the sense of Bochner, and by the triangle

inequality we have

∥∥∥ 1
2πi

∫
γ

z1−α

u2 + z2
(zI −A)−1dz

∥∥∥ ≤ 1
2π

∫ ∞

0

t1−α

|t2e2iω + u2|
(
‖(teiωI −A)−1‖

+ ‖(te−iωI −A)−1‖
)
dt, (2.14)

so we can use Lemma 2.1(i) and plane trigonometry to obtain

≤ K(θ′)
π

cosec(θ′ + ω − π/2) cosecω
∫ ∞

0

t1−α

u2 + t2
dt

t
.

The latest expression involves a beta integral and reduces to

K(θ′)
2π

cosec (θ′ + ω − π/2) cosecω Γ
(1 + α

2

)
Γ
(1− α

2

)
u−1−α. (2.15)

The bound (2.12) follows directly when we compare (2.15) with (2.10). The proof of the

bound on Φu(As) is similar, except that one uses Lemma 2.1(ii) to bound the resolvents.

(ii) This is similar to (i).

(iii) The spectrum of As, denoted σ(As), is contained in Σω by Lemma 2.1(ii). We shall

prove that Φu(As), defined as in (2.11), equals the operator A1−α
s (u2I +A2

s)
−1 as defined

by the Riesz functional calculus. The Riesz functional calculus for bounded operators is

essentially unique as a consequence of Runge’s theorem.

Now As is a bounded linear operator with ‖As‖ ≤ s(1 +K(0)). For small δ > 0 and

R > (1 + K(0))s, we introduce the simple contour γ(δ,R) that consists of the circular
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arcs {δeiψ : ω ≤ ψ ≤ 2π − ω} and {Reiψ : −ω ≤ ψ ≤ ω} connected by the intervals
[δe−iω, Re−iω] and [Reiω, δeiω]. This contour winds round σ(As); hence

A1−α
s (u2I +A2

s)
−1 =

1
2πi

∫
γ(δ,R)

Φu(z)(zI −As)−1dz (2.16)

holds by the Riesz functional calculus. Using simple estimates, one can let δ → 0+ and
R→∞ to replace γ(δ,R) by γ in (2.16), so we deduce that

Φu(As) =
1

2πi

∫
γ

Φu(z)(zI −As)−1 dz = A1−α
s (u2I +A2

s)
−1. (2.17)

(iv) We shall now prove that Φu(As) converges strongly to the operator Φu(A) as
s→∞; the case of Ψu is similar. The Yosida approximants As satisfy ‖Asf‖ ≤ K(0)‖Af‖
for all s > 0, and Asf → Af as s → ∞ for f ∈ D(A) since s(sI + A)−1 → I strongly as
s→∞ by Lemma 2.1(ii) and the density of D(A).

Since D(A) is a dense linear subspace, and Φu(As) (s > 0) are uniformly bounded as
in (i), it now suffices to show that Φu(As)f → Φu(A)f as s→∞ for f ∈ D(A). By (2.2),
we can take the limit of (2.17) and deduce from the dominated convergence theorem [13,
p.45] that Φu(As)f → Φu(A)f as s→∞. One can deal with Ψu similarly.

REMARK. Lemma 2.2(iv) justifies the formula (2.11) as a means of defining
A1−α(u2I +A2)−1.

3. Proof of the maximal theorem

PROPOSITION 3.1. Let A, α and f be as in Theorem 1.1. Then

e−tAf =
1
π

∫ 1

−1

eituΨu(A)A−αfdu+
1
π

(∫ −1

−∞
+

∫ ∞

1

)
eituΦu(A)Aαfdu (3.1)

holds, where the integrals converge in X in the sense of Bochner–Lebesgue.

Proof. We begin by proving a version of (3.1) for As. For R > s(1 +K(0)) we let ΓR be
the semicircular contour [−R,R]⊕SR, where SR is the semicircular arc with centre 0 that
goes from R to −R in the upper half-plane. Since ΓR winds round σ(iAs), but does not
wind round any point in σ(−iAs), we have by the Riesz functional calculus

e−tAsf =
1

2πi

∫
ΓR

eitu
(
(uI − iAs)−1 − (uI + iAs)−1

)
f du (f ∈ X). (3.2)

For t > 0, we can let R→∞ and use Jordan’s lemma to deduce that

e−tAsf =
1
π

∫ ∞

−∞
eitu(u2I +A2

s)
−1Asf du (f ∈ X), (3.3)
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and hence

e−tAsf =
1
π

∫ 1

−1

eituΨu(As)A−α
s fdu+

1
π

(∫ −1

−∞
+

∫ ∞

1

)
eituΦu(As)Aαs fdu (3.4)

where the integrals are absolutely convergent in X.
Next we shall check that we can take limits of each term in (3.4) as s→∞, and thus

deduce (3.1). One can use the identity

(tI +As)−1 − s2

(s+ t)2
(tI +A)−1 =

1
s+ t

+
s

(s+ t)2
( st

s+ t

)( st

s+ t
I +A

)−1

t(tI +A)−1

and Lemma 2.1(i) to obtain∥∥∥(tI +As)−1 − s2

(s+ t)2
(tI +A)−1

∥∥∥ ≤ 1
s+ t

+
s

(s+ t)2
K(0)2 (s, t > 0). (3.5)

As a consequence of this bound, it follows from (2.7) and the dominated convergence
theorem that Aαs f → Aαf as s → ∞ for f ∈ D(A); see [13, p. 45]. Further, we have
Aαs = (s(sI+A)−1)αAα and hence ‖Aαs f‖ ≤ K3‖Aαf‖ for all f ∈ D(A) and some constant
K3. Now we can let s→∞ and obtain the limits of the terms in the integrand of (3.4):

(u2I +A2
s)
−1Asf = Ψu(As)A−α

s f → Ψu(A)A−αf (f ∈ D(A−1)), (3.6)

(u2I +A2
s)
−1Asf = Φu(As)Aαs f → Φu(A)Aαf (f ∈ D(A)). (3.7)

The final step is to apply the dominated convergence theorem to (3.4) and thus deduce
that (3.1) holds for f ∈ D(A) ∩D(A−1) = D(A). Let K1 be as in (2.10) and observe that∫ 1

−1

‖Ψu(A)‖‖A−αf‖du+
(∫ −1

−∞
+

∫ ∞

1

)
‖Φu(A)‖‖Aαf‖du

≤ 2K1

∫ 1

0

uα−1du‖A−αf‖+ 2K1

∫ ∞

1

u−1−αdu‖Aαf‖. (3.8)

Hence the right-hand side of (3.1) converges in X, for f ∈ D(Aα) ∩ D(A−α) = D(Aα).
The left-hand side of (3.4) converges to e−tAf by [12, p. 80].

Conclusion of the proof of Theorem 1.1. For 1 < p < ∞, let q = p/(p − 1). Now
let Lq(Ω, µ;L1((0,∞), dt)) (or briefly Lq(L1)) be the space of measurable real functions
g(x, t) such that the norm

‖g‖Lq(L1) =
{∫

Ω

(∫ ∞

0

|g(x, t)|dt
)q
µ(dx)

}1/q

(3.9)
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is finite. Let Lp(Ω, µ;L∞((0,∞), dt)) be the space of equivalence classes of measurable
real functions v(x, t) such that the norm

‖v‖Lp(L∞) =
{∫

Ω

ess sup
t>0

|v(x, t)|pµ(dx)
}1/p

(3.10)

is finite. Then by [13, p.97] Lp(L∞) is linearly isometrically isomorphic to a closed linear
subspace of the dual of Lq(L1), and hence

‖v‖Lp(L∞) = sup
g

{∣∣∣∫
Ω

∫ ∞

0

v(x, t)g(x, t) dtµ(dx)
∣∣∣ : g ∈ Lq(L1); ‖g‖Lq(L1) ≤ 1

}
. (3.11)

We shall prove that, for f as in Theorem 1.1, v(x, t) = Ttf(x) defines a bounded linear
functional on Lq(L1).

The preceding estimates justify the various applications of Fubini’s Theorem in the
following calculations, where we use (3.1) to write∫

Ω

∫ ∞

0

g(x, t)Ttf(x)dt µ(dx) =
1
π

∫ 1

−1

∫
Ω

(∫ ∞

0

g(x, t)eitudt
)
Ψu(A)A−αf(x)µ(dx) du

+
1
π

(∫ −1

−∞
+

∫ ∞

1

) ∫
Ω

(∫ ∞

0

g(x, t)eitudt
)
Φu(A)Aαf(x)µ(dx) du. (3.12)

The modulus of the first term on the right-hand side of (3.12) is

≤ 1
π

∫ 1

−1

∫
Ω

(∫ ∞

0

|g(x, t)|dt
)
|Ψu(A)A−αf(x)|µ(dx) du, (3.13)

and we can apply Hölder’s inequality to the µ-integral to show this is

≤ 1
π

∫ 1

−1

‖g‖Lq(L1)‖Ψu(A)A−αf‖Lpdu.

By Lemma 2.2(ii), we can conclude that the latest expression is

≤ 2K1

π
‖g‖Lq(L1)‖A−αf‖Lp

∫ 1

0

uα−1du. (3.14)

One can deal with the other terms in (3.12) likewise, and obtain the bound∣∣∣∫
Ω

∫ ∞

0

g(x, t)Ttf(x) dt µ(dx)
∣∣∣ ≤ 2K1

απ
‖g‖Lq(L1)

(
‖Aαf‖Lp + ‖A−αf‖Lp

)
. (3.15)

By the duality formula (3.11), supt>0 |Ttf(x)| belongs to Lp and its norm satisfies the
stated inequality (1.2).
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4. Examples and bounded H∞ functional calculus

In this section we consider which semigroups lie within the scope of Theorem 1.1.

1. When p = 2 and X is a Hilbert space, there is a natural source of examples given by

normal operators N that are densely defined and have spectrum in the sector Σ̄π/2−θ′ .

Then for any bounded and invertible linear operator S on X, the operator A = S−1NS

satisfies the hypotheses of Theorem 1.1. See also [8].

2. Let −A be the generator of a symmetric diffusion semigroup Tt on a probability space

(Ω, µ) in the sense of Stein [18, p. 67] so that:–

(a) Tt (t > 0) is a contraction semigroup on Lp(Ω, µ) for 1 ≤ p ≤ ∞;

(b) Tt (t ≥ 0) is a C0–semigroup of self-adjoint contraction operators on L2(Ω, µ).

Then Tt is a C0–semigroup on Lp for 1 ≤ p <∞ by [17, Theorem X.55], and a

weak-∗ continuous semigroup on L∞; the example of the Hermite semigroup shows that

the semigroup of Tt : L∞ → L∞ need not be strongly continuous at 0. Further, Tt extends

to define a holomorphic semigroup Tz on Lp for 1 < p <∞ and z ∈ Σθ for

θ < π(1−|(2−p)/p|)/2; so that, Tz satisfies axioms (i), (iii) and (iv) of section 1. Moreover,

the imaginary powers A−iu generate a C0–group on Lp(Ω, µ) for 1 < p <∞ with ‖Aiu‖ ≤
Cpe

π|u|/2 for all u ∈ R.

For such semigroups the maximal operator is bounded Lp(Ω, µ) → Lp(Ω, µ) for 1 <

p < ∞. Stein’s proof makes use of the spectral theorem for self-adjoint operators, and

thus of axiom (b). Instead of self-adjointness, the maximal theorems of [1] are obtained

by transference and involve a hypothesis similar to: f ≥ 0 ⇒ Ttf ≥ 0.

The prototypical example of a symmetric diffusion semigroup is the heat semigroup

e−t∆ generated by the Laplace operator −∆ =
∑n
j=1

∂2

∂x2
j

on Rn; even in this case the

Schrödinger operator eit∆ is unbounded on Lp(Rn, dx) for p 6= 2 and t 6= 0 by [16, p. 107].

For the Schrödinger group eit∆ (t ∈ R) on L2(R, dx), Carleson showed that the maximal

operator is bounded D(∆α) → L2 for α = 1/8, and Dahlberg and Kenig proved that this

exponent is optimal [7, 11].

3. Let H∞(Σφ) be the Banach algebra of bounded and holomorphic functions F : Σφ → C
with the supremum norm ‖ ‖∞, and let H∞

0 (Σφ) be the subalgebra of all F such that

|z|−s(1 + |z|)2s|F (z)| is bounded on Σφ for some s > 0. We say that a sectorial operator

A of type ω < φ admits a bounded H∞(Σφ) functional calculus if there exists a constant

κ such that

F (A) =
1

2πi

∫
γ

F (z)(zI −A)−1dz (F ∈ H∞
0 (Σφ)) (4.1)
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defines a bounded linear operator on X with ‖F (A)‖ ≤ κ‖F‖∞ and the functional calculus
map F 7→ F (A) extends to define a bounded homomorphism H∞(Σφ) → B(X). See [10].

If A has a bounded H∞(Σφ) functional calculus for some φ such that 0 < φ < π/2,
then the imaginary powers Aiu form a C0–group with ‖Aiu‖ ≤ κe|u|φ. In this case the
maximal function M(f) belongs to Lp for each f ∈ D(logA) by Theorem 3.1 of [6] – a
significantly weaker hypothesis on f than that required by Theorem 1.1 above.

Unfortunately, it is a stringent condition for A to have a bounded H∞(Σφ) functional
calculus with φ < π/2; Theorem 4.1 below gives a sufficient condition for an even stronger
property to hold. Baillon and Clement have exhibited, for each 0 < ω < π, a sectorial
operator A in Hilbert space of type ω such that Ait is unbounded for each t ∈ R \ {0}; see
[2, 15].

THEOREM 4.1. Let iA be the generator of a bounded C0–group on a closed linear subspace

X of Lp(Ω, µ) for some p such that 1 < p <∞. Suppose further that the spectrum of A is

contained in [0,∞). Then A has a bounded H∞(Σφ) functional calculus for each φ such

that 0 < φ < π. Further, e−tA and e−tA
2

define bounded holomorphic semigroups on Σθ
for all θ such that 0 < θ < π/2.

Proof. Berkson, Gillespie and Muhly have shown by transference that A is associated with
a resolution of the identity with respect to an increasing family E(s) (0 ≤ s < ∞) of
uniformly bounded projections in B(X) that is strongly right-continuous and has strong
left-hand limits; see [4]. Further there is an integral with respect to this spectral family,
and a bounded functional calculus map which we now describe.

Let ∆k = [2k, 2k+1) (k ∈ Z) be the standard dyadic decomposition of (0,∞) and for
a complex function F let

var (F ;∆k) = sup
{N−1∑
j=1

|F (sj+1)− F (sj)| : 2k ≤ s1 < · · · < sN ≤ 2k+1
}

(4.2)

be the total variation of F over ∆k. Then the Marcinkiewicz 1-multipliers are the functions
F such that the norm

‖F‖M1(0,∞) = sup
s>0

|F (s)|+ sup
k∈Z

var (F ;∆k) (4.3)

is finite. By Theorem 1.2 of [3] there is a bounded functional calculus map M1(0,∞) →
B(X) :

F 7→ F (A) =
∫ ∞

0

F (s)E(ds). (4.4)

10



If F is bounded and holomorphic in a sector Σφ for some φ ≤ π/2, then x|F ′(x)| ≤
‖F‖∞cosecφ holds for x > 0 by the Cauchy integral formula, and hence the restriction
of F to (0,∞) belongs to M1(0,∞). We deduce that ‖F (A)‖ ≤ κ(A,φ)‖F‖∞ for some
κ(A,φ) which is independent of F ; hence A has a bounded H∞(Σφ) functional calculus.

When t lies in the open right half-plane, the functions F (x) = e−tx and G(x) = e−tx
2

have total variation on (0,∞) less than or equal to |t|/<t; hence the uniform bounds∥∥e−tA∥∥ ≤ κ(A, θ),
∥∥e−tA2∥∥ ≤ κ(A, θ) (t ∈ Σθ) (4.5)

hold for θ < π/2.

4. Theorem 4.1 applies to the Poisson and heat semigroups on Lp(R) (1 < p <∞), since we
can take for A the operator that is determined by the Fourier multiplier (̂Af)(ξ) = |ξ|f̂(ξ)
for f ∈ C∞

c (R). To see that this defines a C0–group, we write

e−iAt = UtP+ + U−t(I − P+) (t ∈ R), (4.6)

where Ut (t ∈ R) is the translation group Utf(x) = f(x− t) and P+ is the Riesz projection
onto the translation-invariant subspace {f ∈ Lp(R) : f̂(ξ) = 0, ξ ≤ 0}. Since P+ is bounded
on Lp for 1 < p < ∞, [19, Chapter 2] one can now easily check that eiAt is uniformly
bounded and strongly continuous.
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