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Abstract

We present a robust Farkas lemma, which provides a new generalization of the
celebrated Farkas lemma for linear inequality systems to uncertain conical linear
systems. We also characterize the robust Farkas lemma in terms of a generalized
characteristic cone. As an application of the robust Farkas lemma we establish a
characterization of uncertainty-immunized solutions of conical linear programming
problems under uncertainty.

AMS Subject Classifications: 90C30, 49B27, 90C48

1 Introduction

The celebrated Farkas lemma [9] states that for a given vector c and a given system
of vectors a1, . . . , am, the linear function cT x is non-negative over the linear inequality
system aT

1 x ≥ 0, . . . , aT
mx ≥ 0 means that the vector c can be expressed as a non-negative

linear combination of the vectors a1, . . . , am. Symbolically, it describes that

[aT
1 x ≥ 0, . . . , aT

mx ≥ 0 ⇒ cT x ≥ 0] ⇔ [∃λi ≥ 0, c =
m∑

i=1

λiai].

The Farkas lemma [9] underpins the elegant and powerful duality theory of linear pro-
gramming. It has undergone numerous generalizations [7, 8, 14, 19, 20] over a century. Its
wide-ranging applications to optimization extend from linear programming and smooth
optimization to modern areas of optimization such as semi-definite programming [23] and
non-smooth optimization [18]. But, these generalizations [14, 17, 24] and applications
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have so far been limited mainly to systems without data uncertainty, despite the reality
of data uncertainty in many real-world systems due to modelling or prediction errors [4].

The purpose of this paper is to present a new form of the Farkas lemma, called the robust
Farkas lemma, for general uncertain conical linear systems and to derive a characteriza-
tion of uncertainty-immunized solutions of conical linear programming problems under
uncertainty.

In recent years, a great deal of attention has been focussed on optimization under un-
certainty due to the importance of finding solutions to optimization problems that are
affected by data uncertainty. Robust optimization methodology [2, 4, 10, 22] is a power-
ful approach for examining and solving optimization problems under data uncertainty. It
treats data uncertainty as deterministic via bounded uncertainty sets and does not limit
the data values to point estimates. For a detailed analysis of the robust optimization
framework, see Ben-Tal and Nemirovski [2, 4], and El Ghaoui [10]. In this framework,
how to characterize solutions that are immunized against data uncertainty has become a
fundamental and critical question. These uncertainty-immunized solutions are called ro-
bust solutions of uncertain problems [1, 4]. Characterizations of such robust solutions for
classes of uncertain linear programming problems have recently been given in Jeyakumar
and Li [16].

More importantly, in many applications [4], optimization problems involving uncertain
conical systems arise in the form of semi-definite programming problems [23] as well
as semi-infinite programming problems [11, 12, 22]. As in optimization without data
uncertainty [25], characterizing robust solutions of conical optimization problems under
uncertainty requires a generalization of the Farkas lemma for uncertain conical linear
systems.

In Section 2, we establish robust forms of the Farkas lemma for a general uncertain conical
linear system. We then present a characterization of a robust Farkas lemma in terms of the
closure of a convex cone, called robust characteristic cone, in Section 3. Finally, we provide
an application of the robust Farkas lemma by giving a characterization of uncertainty-
immunized solutions of conical linear programming problems under uncertainty.

2 Robust Farkas’ Lemma

We begin this section by fixing notation and definitions that will be used throughout the
paper. Let X, Y be locally convex Hausdorff spaces. The dual space of X (resp. Y )
is denoted by X∗ (resp. Y ∗) which consists of all bounded linear functionals on Y . It
is known that the space X∗ endowed with the weak∗ topology is again a locally convex
Hausdorff space. Let L(X; Y ) denote the set of all the continuous linear mappings from
X to Y . Let A ∈ L(X; Y ) be a continuous linear mapping. Then the conjugate mapping
of A is a continuous linear mapping from Y ∗ to X∗ defined by

〈A∗(y∗), x〉 = 〈y∗, Ax〉 for all y∗ ∈ Y ∗, x ∈ X.

where 〈·, ·〉 denotes the corresponding linear action between the dual pairs. For a set C
in Y , the interior (resp. closure, convex hull, conical hull) of C is denoted by intC (resp.
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C, coC, coneC). If C ⊆ X∗, then the weak∗ closure of C is denoted by C
w∗

. Let K be
a closed cone in Y . Then the (positive) polar cone of K is defined by K+ := {k∗ ∈ Y ∗ :
〈k∗, k〉 ≥ 0}.

Theorem 2.1. (Robust Farkas’ Lemma). Let U ⊆ L(X; Y ) and let V ⊆ X∗ be closed con-
vex uncertainty sets. Let S be a closed convex cone in Y . Then, the following statements
are equivalent:

(i) ∀A ∈ U , Ax ∈ −S ⇒ 〈c, x〉 ≥ 0 ∀c ∈ V .

(ii) −V ⊆ co
⋃
A∈U

A∗(S+)
w∗

.

Proof. [(i) ⇒ (ii)] Suppose that (ii) does not hold. Then there exists c ∈ V such that

−c /∈ co
⋃
A∈U

A∗(S+)
w∗

.

Then, by the convex separation theorem, there exists v ∈ X\{0} such that

〈u, v〉 < −〈c, v〉, ∀u ∈
⋃
A∈U

A∗(S+).

As F :=
⋃

A∈U A∗(S+) is a cone, we obtain that

〈u, v〉 ≤ 0 < −〈c, v〉, ∀u ∈ F.

This gives us that
sup
u∈F

〈u, v〉 ≤ 0 and 〈c, v〉 < 0.

Now,
sup

A∈U ,a∈S+

〈Av, a〉 = sup
A∈U ,a∈S+

〈A∗a, v〉 = sup
u∈F

〈u, v〉 ≤ 0 and 〈c, v〉 < 0.

Hence, from the bipolar theorem, ∀A ∈ U , Av ∈ −S and 〈c, v〉 < 0. This contradicts (i).
[(ii) ⇒ (i)] Let x ∈ Rn be such that Ax ∈ −S ∀A ∈ U and let c ∈ V . Suppose that

(ii) holds. Then

−c ∈ co
⋃
A∈U

A∗(S+)
w∗

.

Then, there exists a net {cs} ⊆ co
⋃

A∈U A∗(S+) such that cs → −c. For each s, there
exists an index set Is with |Is| < +∞, λs

i ∈ [0, 1], i ∈ Is with
∑

i∈Is
λs

i = 1, As
i ∈ U ,

xs∗
i ∈ S+, i ∈ Is, such that

cs =
∑
i∈Is

λs
iA

s∗
i (xs∗

i ).

So,

〈cs, x〉 =
∑
i∈Is

λs
i 〈As∗

i (xs∗
i ), x〉 =

∑
i∈Is

λs
i 〈xs∗

i , As
i (x)〉.

Since As
i (x) ∈ −S and xs∗

i ∈ S+, it follows that 〈cs, x〉 ≤ 0. As 〈cs, x〉 → −〈c, x〉, we have
〈c, x〉 ≥ 0. Hence, (i) holds.
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Theorem 2.2. (Robust Farkas Lemma with Interval Uncertainty) Let ai, ai ∈ Rn with
ai ≤ ai, for i = 0, 1, . . . ,m. Then, the following statements are equivalent:

(i) ∀a1 ∈ [a1, a1], aT
1 x ≤ 0, . . . , ∀am ∈ [am, am], aT

mx ≤ 0 ⇒ aT
0 x ≥ 0, ∀a0 ∈ [a0, a0]

(ii) (∀a0 ∈ [a0, a0]) (∃λ ∈ Rm
+ ) a0 +

∑m
i=1 λiai ≥ 0 and a0 +

∑m
i=1 λiai ≤ 0.

Proof. Let X = Rn, Y = Rm, S = Rm
+ , A = (a1, a2, . . . , am), U =

∏m
i=1[ai, ai] and

V = [a0, a0]. Then,

⋃
A∈U

A∗(S+) =
⋃

λ∈Rm
+

m∑
i=1

λi[ai, ai]

=
⋃

λ∈Rm
+

m∑
i=1

λi([a
1
i , a

1
i ]× [a2

i , a
2
i ]× . . . [an

i , a
n
i ]).

is a finitely generated convex cone and so is a closed convex cone. The conclusion now
follows from Theorem 2.1. Note in this case that (ii) of Theorem 2.1 is equivalent to the
condition that for each a0 ∈ [a0, a0] there exist λi ≥ 0, i = 1, . . . ,m such that −a0 =∑m

i=1 λidi, for some di ∈ [ai, ai]. This is, in turn, equivalent to (ii), as a0 +
∑m

i=1 λiai ≥
a0 +

∑m
i=1 λidi = 0 and a0 +

∑m
i=1 λiai ≤ a0 +

∑m
i=1 λidi = 0.

A nonhomogeneous version of the robust Farkas lemma that is often used in applica-
tions to optimization is given in the following theorem.

Theorem 2.3. (Robust non-homogeneous Farkas lemma) Let U ⊆ L(X; Y ) × Y be a
closed convex uncertainty set and let Ũ = {Ã ∈ L(X × R; Y × R) : Ã(x, t) = (Ax +
tb,−t) and (A, b) ∈ U}. Let c ∈ X∗, α ∈ R and let S be a closed convex cone in Y . Then,
the following statements are equivalent:

(i) ∀(A, b) ∈ U , Ax + b ∈ −S ⇒ 〈c, x〉+ α ≥ 0;

(ii) −(c, α) ∈ co
⋃

Ã∈Ũ Ã∗(S+ × R+)
w∗

.

Proof. First of all, we show that (i) is equivalent to

(i’) ∀(A, b) ∈ U , Ax + tb ∈ −S, t ≥ 0 ⇒ 〈c, x〉+ tα ≥ 0.

Clearly, (i′) ⇒ (i). To see (i) ⇒ (i′), we proceed by the method of contradiction and
suppose that there exists (x0, t0) ∈ X × R+ satisfies Ax0 + t0b ∈ −S, ∀(A, b) ∈ U and
〈c, x0〉+t0α0 < 0. If t0 > 0, then we have A(x0

t0
)+b ∈ −S, ∀(A, b) ∈ U and 〈c, x0

t0
〉+α0 < 0.

This contradicts (i). If t0 = 0, then Ax0 ∈ −S, ∀(A, b) ∈ U and 〈c, x0〉 < 0. Now, fix
x ∈ X such that ∀(A, b) ∈ U , Ax + tb ∈ −S and consider xt = x + tx0, t ∈ R. Then,

Axt + tb = A(x + tx0) + tb = Ax + tb + tAx0 ∈ −S, ∀ (A, b) ∈ U

and, as t → +∞,
〈c, xt〉+ α = 〈c, x + tx0〉+ α → −∞.
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This also contradicts (i), and so, (i) is equivalent to (i’). Now, define Ã ∈ L(X×R; Y ×R)
and c̃ ∈ X∗ × R respectively by

Ãz = (Ax + tb,−t) and 〈c̃, z〉 = 〈c, x〉+ tα, ∀z = (x, t) ∈ X × R.

Let V := {(c, α)}. Then (i’) can be equivalently rewritten as

∀Ã ∈ Ũ , Ãz ∈ −(S × R+) ⇒ 〈c̃, z〉 ≥ 0 ∀c̃ ∈ V .

Therefore, by Theorem 2.1, we obtain that (i) is equivalent to (ii).

Note that our method of proof of Theorem 2.3 shows that it can be improved by allow-
ing (c, α) also to be uncertain. However, we have given a form of nonhomogeneous robust
Farkas’ lemma with fixed data (c, α) because the subsequent study of robust solutions of
uncertain optimization problems only requires such a form later in the paper.

3 Robust Characteristic Cones

In this Section, we establish a characterization of the robust Farkas lemma in terms of the
closure of a characteristic convex cone, called robust characteristic cone. We also provide
conditions guaranteeing the closure of the characteristic cone.

For U ⊆ L(X; Y )× Y and a closed convex cone S of Y , we define the robust charac-
teristic cone C(U , S) by

C(U , S) = co
⋃
Ã∈Ũ

Ã∗(S+ × R+),

where Ũ = {Ã ∈ L(Rn × R; Y × R) : Ã(x, t) = (Ax + tb,−t) and (A, b) ∈ U}. We
now derive a characterization of the robust non-homogeneous Farkas’ lemma in terms of
C(U , S).

Theorem 3.1. Let U ⊆ L(X; Y )×Y be a closed convex uncertainty set. Let S be a closed
convex cone in Y . Then, the following statements are equivalent:

(i) For each (c, α) ∈ X∗ × R,

[∀(A, b) ∈ U , Ax + b ∈ −S ⇒ 〈c, x〉+ α ≥ 0] ⇔ [−(c, α) ∈ C(U , S)].

(ii) the convex cone C(U , S) is weak∗ closed.

Proof. Fix an arbitrary (c, α) ∈ X∗ × R. From Theorem 2.3, we see that

[∀(A, b) ∈ U , Ax + b ∈ −S ⇒ 〈c, x〉+ α ≥ 0] ⇔ −(c, α) ∈ co
⋃
Ã∈Ũ

Ã∗(S+ × R+)
w∗

].
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Therefore, (i) is equivalent to the condition that the convex cone

C(U , S) = co
⋃
Ã∈Ũ

Ã∗(S+ × R+)

is weak∗ closed.

A special case of Theorem 3.1, where U is a singleton, can be found in [15]. In this
case, the cone

⋃
Ã∈Ũ Ã∗(S+ × R+) is convex (and so the convex hull in the definition of

the characteristic cone or in Theorem 2.3 (ii) is superfluous). On the other hand, the
following example shows that

⋃
Ã∈Ũ Ã∗(S+ × R+) is, in general, not necessarily convex.

Example 3.1. Let S = R2
+ and let

U = {(A, b) ∈ R2×2 × R : A =

(
a 0
0 a

)
, a ∈ [−1, 1], b = 0}.

Then, we have Ũ = {Ã : Ã(x1, x2, t) = (ax1, ax2,−t), a ∈ [−1, 1]} and so,⋃
Ã∈Ũ

Ã∗(S+ × R+) =
⋃

a∈[−1,1]

{(ax∗1, ax∗2,−r) : x∗1, x
∗
2, r ∈ R+}

=

(
(R2

+) ∪ (−R2
+)

)
× (−R),

which is a nonconvex cone.

We show that the robust characteristic cone is closed whenever a Slater type condition
holds.

Proposition 3.1. Suppose that X = Rn and the closed convex uncertainty set U is
compact and that there exists x0 ∈ Rn such that

Ax0 + b ∈ −intS ∀ (A, b) ∈ U .

Then C(U , S) is closed.

Proof. First of all, we note that Ũ is also a convex compact set. Let c ∈ co
⋃

Ã∈Ũ Ã∗(S+ × R+).

Then, there exists a sequence {ck} ⊆ co
⋃

Ã∈Ũ Ã∗(S+ × R+) such that ck → c. Since

ck ∈ co
⋃

Ã∈Ũ Ã∗(S+ × R+), by Caratheodory’s theorem, there exist λk
i ∈ [0, 1] with∑n+1

i=1 λk
i = 1, Ãk∗

i ∈ Ũ , sk∗
i ∈ S+ × R+, i = 1, . . . , n + 1, such that

ck =
n+1∑
i=1

λk
i Ã

k∗
i (sk∗

i ) (3.1)

and ck → c. Now we divide the proof into two cases: Case 1,
∑n+1

i=1 ‖sk∗
i ‖ is bounded;

Case 2,
∑n+1

i=1 ‖sk∗
i ‖ is unbounded.

Suppose that Case 1 holds. Then by passing to subsequence if necessary, we may
assume that λk

i → λi with λi ∈ [0, 1] and
∑n+1

i=1 λi = 1, Ãk∗
i → Ã∗

i ∈ Ũ and sk∗
i → s∗i ∈ S+.

Thus c =
∑n+1

i=1 λiA
∗
i (s

∗
i ) ∈ co

⋃
A∈Ũ A∗(S+), and so, the conclusion follows.

6



Suppose that Case 2 holds. Without loss of generality, we may assume that
∑n+1

i=1 ‖sk∗
i ‖ →

∞ as k → ∞. By passing to subsequence, we may further assume that λk
i → λi with

λi ∈ [0, 1] and
∑n+1

i=1 λi = 1, Ãk∗
i → Ã∗

i ∈ Ũ and

sk∗
i∑n+1

i=1 ‖sk∗
i ‖

→ a∗i ∈ S+ × R+, i = 1, . . . , n + 1,

with (a∗1, . . . , a
∗
n+1) 6= 0. Dividing by

∑n+1
i=1 ‖sk∗

i ‖ on both sides of (3.1) and passing to
limit, we have

0 =
n+1∑
i=1

λiÃ
∗
i (a

∗
i ).

Now, by the assumption, there exists x0 such that Ax0 + b ∈ −intS ∀(A, b) ∈ U . Letting
u0 = (x0, 1) we see that

0 = 〈
n+1∑
i=1

λiÃ
∗
i (a

k∗
i ), u0〉 =

n+1∑
i=1

λi〈a∗i , Ãiu0〉. (3.2)

Note that, 〈x, x∗〉 < 0 for all x ∈ −intK and for all x∗ ∈ K+\{0} where K is a closed
convex cone. This together with the fact that, for each i = 1, . . . , n + 1,

Ãiu0 = (Aix0 + bi,−1) ∈ −int(S × R+).

gives us
n+1∑
i=1

λi〈a∗i , Ãi(u0)〉 < 0.

This contradicts (3.2), and so the conclusion follows.

4 Characterizing Robust Solutions

In this section, as an application of the robust Farkas lemma, we derive a characterization
of robust solutions of conical linear programming problems under uncertainty.

Consider

(CP ) min
x∈X

〈c, x〉

s.t. Ax + b ∈ −S,

where the data (A, b) is uncertain and they locate in the closed convex uncertainty set
U ⊆ L(X; Y )× Y . The robust counterpart of (CP ) can be formulated as follows:

(RCP ) min
x∈X

〈c, x〉

s.t. Ax + b ∈ −S, ∀(A, b) ∈ U .
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We may assume that the objective function is unaffected by data uncertainty. If the
data c in the objective function is also uncertain and if c is in the uncertainty set V , then
the robust counterpart can be formulated as

min
(x,t)∈X×R

t

s.t. 〈c, x〉 ≤ t, ∀c ∈ V
Ax + b ∈ −S, ∀(A, b) ∈ U .

This can then be expressed in the form of (RCP) as follows.

min
(x,t)∈X×R

t

s.t. A(x, t) + b ∈ −(S × R+),

where b = (b, 0) ∈ Y × R, A ∈ L(X × R; Y × R) is given by

A(x, t) = (Ax, 〈c, x〉 − t)

and (A, b) ∈ U . The uncertainty set U ⊆ L(X; Y × R)× (Y × R) is defined by

U = {(A, b) ∈ L(X × R; Y × R)× (Y × R) : (A, b) ∈ U , c ∈ V}.

Note that a robust feasible point x of (CP) is a feasible point of its robust counterpart.
Moreover, x is said to be a robust solution of (CP) whenever x is a solution of its robust
counterpart (RCP).

Theorem 4.1. Let x be a robust feasible point of (CP). Suppose that the robust charac-
teristic cone C(U , S) is weak∗ closed. Then, x is a robust solution of (CP) if and only if
there exist a finite index set I, λi ∈ [0, 1], y∗i ∈ S+ and (Ai, bi) ∈ U , i ∈ I with

∑
i∈I λi = 1

such that
c +

∑
i∈I

λiA
∗
i (y

∗
i ) = 0 and

∑
i∈I

λi (〈y∗i , Aix + bi〉) = 0. (4.3)

Proof. The point x is a robust solution of (CP) if and only if

∀(A, b) ∈ U Ax + b ∈ −S ⇒ 〈c, x〉 ≥ 〈c, x〉.

Applying Theorem 2.3 and noting that C(U , S) is weak∗ closed, we obtain that x is a
solution of (RCP) if and only if

(−c, 〈c, x〉) ∈ C(U , S) = co
⋃
Ã∈Ũ

Ã∗(S+ × R+).

Equivalently, there exist a finite index I, λi ∈ [0, 1] with
∑

i∈I λi = 1, (y∗i , ri) ∈ S+ × R+

and

Ãi ∈ Ũ := {Ã ∈ L(X × R; Y × R) : Ã(x, t) = (Ax + tb,−t), (A, b) ∈ U}, i ∈ I,
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such that (−c, 〈c, x〉) =
∑

i∈I λiÃ
∗
i (y

∗
i , r

∗
i ). So, there exists (Ai, bi) ∈ U such that

(−c, 〈c, x〉) =
∑
i∈I

λiÃ
∗
i (y

∗
i , ri)

=
∑
i∈I

λi(A
∗
i (y

∗
i ), 〈y∗i , bi〉 − ri),

where Ã∗
i ∈ L(Y ∗×R; X∗×R) and Ã∗

i (y
∗, r) = (A∗

i y
∗, 〈y∗, b〉−r). Therefore, x is a robust

solution of (CP) if and only there exist a finite index set I, λi ∈ [0, 1] with
∑

i∈I λi = 1,
(y∗i , ri) ∈ S+ × R+ and (Ai, bi) ∈ U such that

c +
∑
i∈I

λiA
∗
i (y

∗
i ) = 0 (4.4)

and
−〈c, x〉+

∑
i∈I

λi (〈y∗i , bi〉 − ri) = 0 (4.5)

We now show that (4.4) and (4.5) are equivalent to (4.3). To see this, suppose that (4.4)
and (4.5) hold. Then, we have

〈c, x〉+
∑
i∈I

λi〈y∗i , Aix〉 = 〈c, x〉+
∑
i∈I

λi〈A∗
i (y

∗
i ), x〉 = 0

Adding this with (4.5), we obtain that∑
i∈I

λi (〈y∗i , Aix + bi〉 − ri) = 0

Noting that Aix + bi ∈ −S, y∗i ∈ S+ and ri ∈ R+, we obtain that∑
i∈I

λiri = 0 and
∑
i∈I

λi (〈y∗i , Aix + bi〉) = 0.

So, (4.3) follows.
Conversely, suppose that (4.3) holds. Then clearly (4.4) holds. To see (4.5), note from

(4.4) that

−〈c, x〉 −
∑
i∈I

λi〈y∗i , Ai(x)〉 = −〈c, x〉 −
∑
i∈I

λi〈A∗
i (y

∗
i ), x〉 = 0.

Adding this with the second relation of (4.3), we obtain

−〈c, x〉+
∑
i∈I

λi〈y∗i , bi〉 = 0.

Hence (4.5) holds with ri = 0.

Corollary 4.1. For (CP), suppose that X = Rn, U is compact and convex, and the
following strong Slater condition holds:

∃x0 ∈ Rn, Ax0 + b ∈ −intS ∀(A, b) ∈ U .
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Then, x is a robust solution of (CP) if and only if there exist a finite index set I, λi ∈ [0, 1],
y∗i ∈ S+ and (Ai, bi) ∈ U , i ∈ I with

∑
i∈I λi = 1 such that

c +
∑
i∈I

λiA
∗
i (y

∗
i ) = 0 and

∑
i∈I

λi (〈y∗i , Ai(x) + bi〉) = 0.

Proof. The conclusion follows from Proposition 3.1 and the preceding theorem.
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