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Abstract

The celebrated S-lemma establishes a powerful equivalent condition for the non-

negativity of a quadratic function over a single quadratic inequality. However, this

lemma fails without the technical condition, known as the Slater condition. In this

paper, we first show that the Slater condition is indeed necessary for the S-lemma

and then establishes a regularized form of the S-lemma in the absence of the Slater

condition. Consequently, we present characterizations of global optimality and the

Lagrangian duality for quadratic optimization problems with a single quadratic

constraint. Our method of proof makes use of Brickman’s theorem and conjugate

analysis, exploiting the hidden link between the convexity and the S-lemma.
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1 Introduction

The S-lemma provides an elegant and powerful equivalent condition for the nonnegativity

of a quadratic function f(x) over a single quadratic inequality g(x) ≤ 0. In symbolic terms,

it states that

[g(x) ≤ 0 =⇒ f(x) ≥ 0] ⇐⇒ (∃µ ≥ 0)(∀x ∈ IRn) f(x) + µg(x) ≥ 0, (1)

whenever g(x0) < 0 for some x0. This technical condition is known as the Slater condition.

The S-lemma is a widely used tool in control theory, and in particular, in stability analysis

of nonlinear systems [1, 2]. It also has important applications in quadratic optimization

as well as in semidefinite optimization [5, 16, 17, 20]. For an excellent recent survey of

the S-lemma, see [19]. In this paper, we show that the Slater condition is a necessary

and sufficient condition for the S-lemma in the sense that (1) holds for each quadratic

function f if and only if the Slater condition holds. As an application, we present a

characterization of Lagrangian duality for quadratic optimization problems with a single

quadratic inequality constraint in terms of the Slater condition.

On the other hand, the Slater condition limits the application of the S-lemma. For

instance, the Slater condition is never satisfied for a system involving a homogeneous

convex quadratic inequality, g(x) ≤ 0, where g(x) = xT Bx and B is a symmetric positive

semidefinite matrix. In the absence of the Slater condition, we establish that a regular-

ized form of the S-lemma holds. Consequently, we derive a complete characterization of

global optimality of a quadratic minimization problem over a single quadratic inequality

constraint without the Slater condition.

Our method of proof combines the application of the Brickman’s theorem [18, 3, 19]

and conjugate analysis, exploiting the critical link between the convexity and the S-lemma.

Our approach was motivated by the recent work on Farkas’ lemma for convex inequality

systems and its applications to convex programming problems (see [8, 7, 13, 11, 14, 12]).

The layout of the paper is as follows. Section 2 provides background material on

convex conjugate analysis and on convexity properties of quadratic forms, used later in the

paper. Section 3 presents a characterization of S-lemma in terms of the Slater condition

and provides a characterization of the Lagrangian duality for quadratic programming

problems with a single quadratic constraint. Section 4 establishes a regularized S-lemma

and a complete characterization of global optimality of a quadratic minimization problem

over a single quadratic inequality constraint without the Slater condition.
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2 Preliminaries

We recall in this section notation and basic results which will be used later in the paper.

The space of all (n×n) symmetric matrices is denoted by Sn. The (n×n) identity matrix is

denoted by In. The notation A � B means that the matrix A−B is positive semidefinite.

Moreover, the notation A � B means the matrix A−B is positive definite. The positive

semidefinite cone is defined by Sn
+ := {M ∈ Sn : M � 0}. Let A, B ∈ Sn. Denote

the (trace) inner product of A and B is defined by A · B = Tr[AB] =
∑n

i=1

∑n
j=1 aijbji

where aij is the (i, j) element of A and bji is the (j, i) element of B. Let K be a cone

in Sn. The norm of A ∈ Sn and the distance of A to the cone K is defined respectively

by ‖A‖ = (A · A)1/2 and d(A, K) = infB∈K ‖A − B‖. The kernel of a matrix A ∈ Sn is

defined by KerA := {x ∈ Rn : Ax = 0}. For a subset D ⊂ IRn, the closure of D will be

denoted by D. A set K ⊂ IRn is called a cone if λK ⊆ K for any λ ≥ 0. The (negative)

polar of K is defined by K◦ := {d : dT x ≤ 0∀x ∈ K}.
For cones K1, K2 ∈ IRn, the following polar formula holds (see [23]):

(K◦
1 ∩K◦

2)◦ = K1 + K2.

In particular, letting K1 = −Sn
+ and K2 =

⋃
t≥0 tH2, where H2 is some matrix in Sn, we

obtain that

{X ∈ Sn
+ : H2 ·X ≤ 0}◦ = (K◦

1 ∩K◦
2)◦ = K1 + K2 = −Sn

+ +
⋃
t≥0

tH2. (2)

Let h : Rn → R ∪ {−∞, +∞}. The conjugate function of h, h∗ : Rn → R ∪ {+∞}, is

defined by

h∗(v) := sup{v(x)− h(x) | x ∈ dom h},

where dom h := {x ∈ Rn | h(x) < +∞} is the effective domain of h and v(x) := vT x.

The function h is said to be proper if h does not take on the value −∞ and dom h 6= ∅.
The epigraph of h is defined by

epi h := {(x, r) ∈ Rn × R | x ∈ dom h, h(x) ≤ r}.

If h : Rn → R is a continuous convex function, the subdifferential of h at x ∈ Rn is

defined by

∂h(x) = {a ∈ Rn : aT (y − x) ≤ h(y)− h(x)∀ y ∈ Rn}. (3)
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For ε ≥ 0, the ε-subdifferential of h at x ∈ Rn is defined by

∂εh(x) = {a ∈ Rn : aT (y − x) ≤ h(y)− h(x) + ε. ∀ y ∈ Rn}. (4)

It can be verified that ∂h(x) ⊆ ∂εh(x) for any ε > 0 and ∂h(x) = {∇h(x)} if h is a

continuously differentiable convex function. For h : Rn → R, [h ≤ 0] := {x ∈ Rn | h(x) ≤
0}. The normal cone of [h ≤ 0] at the point x ∈ [h ≤ 0] is N[h≤0](x) := {a ∈ Rn :

aT (z − x) ≤ 0, ∀ z ∈ [h ≤ 0]}.
If h is a continuously differentiable convex function on Rn, then for each x ∈ [h ≤ 0],

N[h≤0](x) = {a ∈ Rn : (a, aT x) ∈
⋃
λ≥0

epi(λh)∗}, (5)

and ⋃
λ≥0,λh(x)=0

{λ∇h(x)} = {a ∈ Rn : (a, aT x) ∈
⋃
λ≥0

epi(λh)∗}. (6)

Thus, if
⋃

λ≥0 epi (λh)∗ is closed, then for each x ∈ [h ≤ 0],

N[h≤0](x) =
⋃

λ≥0,λh(x)=0

{λ∇h(x)}. (7)

For details see [10].

Let f be a quadratic function defined by f(x) = xT Ax + aT x + α where A ∈ Sn,

a ∈ Rn and α ∈ R. We define Hf by

Hf =

(
A a/2

aT /2 α

)
. (8)

A useful fact is that f(x) ≥ 0 for all x ∈ Rn ⇔ Hf ∈ Sn+1
+ .

The following convexity results (cf [3, 18]) play a key role in deriving a regularized

S-lemma later in the paper.

Lemma 2.1 (Brickman, [3]) If f, g : Rn → R (n ≥ 3) are homogeneous quadratic

functions, defined by f(x) = xT Ax and g(x) = xT Bx, A, B ∈ Sn, then the set V :=

{(f(x), g(x)) | ‖x‖ = 1} ⊂ R2 is a convex compact set.

Lemma 2.2 (Mart́ınez-Legaz, [18, Lemma 3.1]) Let A, B be two 2×2 real symmetric

matrices. Define K = {(xT Ax, xT Bx) : x ∈ R2}. Then, K = {(A ·X, B ·X) : X ∈ S2
+}

and is convex.
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3 Characterizations of S-Lemma and Duality

In this section, we provide characterizations of S-Lemma and Lagrangian duality for a

quadratic optimization over a single quadratic constraint in terms of the Slater condition.

Theorem 3.1 (Characterization of S-Lemma) Let g be a quadratic function that is not

identically zero. Suppose that [g ≤ 0] 6= ∅. Then the following statements are equivalent:

(i) For each quadratic function f : Rn → IR,

[g(x) ≤ 0 =⇒ f(x) ≥ 0] ⇐⇒ (∃λ ≥ 0)(∀x ∈ Rn) f(x) + λg(x) ≥ 0.

(ii)
⋃

λ≥0 epi(λg)∗ is a closed set in Rn+1.

(iii) There exists x0 ∈ Rn such that g(x0) < 0.

Proof. [(i) ⇒ (ii)] Let (u, α) ∈ cl
⋃

λ≥0 epi (λg)∗. Then there exist sequences {uk} ⊂ Rn,

{αk}, {λk} ⊂ IR such that, for each k, λk ∈ R+, (uk, αk) ∈ epi(λkg)∗ with limk→∞ uk = u

and limk→∞ αk = α. So, (λkg)∗(uk) ≤ αk. Equivalently, for each x ∈ Rn, uT
k x− λkg(x) ≤

αk. Now, for each x ∈ Rn with g(x) ≤ 0, λkg(x) ≤ 0, and so, uT
k x ≤ αk. Letting k →∞,

−uT x + α ≥ 0. Let f(x) = −uT x + α ≥ 0. Then f is a quadratic function and so, by the

assumption, there exists µ ≥ 0 such that −uT x + α + µg(x) ≥ 0. Thus, uT x−µg(x) ≤ α.

This gives us that (µg)∗(u) ≤ α which means that (u, α) ∈ epi(µg)∗ ⊂
⋃

λ≥0 epi (λg)∗,

and hence the set
⋃

λ≥0 epi (λg)∗ is closed.

[(ii) ⇒ (iii)] Let g(x) = xT Bx + bT x + β, where B ∈ Sn, b ∈ IRn and β ∈ IR. On the

contrary to (ii), suppose that g(x) ≥ 0 for all x ∈ Rn. Then g is convex. Otherwise B is

not positive semidefinite. Then, there exists v0 such that vT
0 Bv0 < 0. So, g(γv0) → −∞

as γ → ∞, which is not possible as g(x) ≥ 0. Hence, [g ≤ 0] = [g = 0] : {x ∈ IRn :

g(x) = 0} 6= ∅. Since g is convex and it attains its minimum at each point of [g = 0],

[g ≤ 0] = {x : ∇g(x) = 0} = {x : 2Bx + b = 0}. (9)

Let x ∈ [g = 0]. Then, ∇g(x) = 0 and [g ≤ 0] = x̄ + KerB. Moreover, it follows from (ii)

and (7) that

N[g≤0](x) =
⋃

λ≥0,λg(x)=0

{λ∇g(x)} =
⋃
λ≥0

{λ∇g(x)} = {0}. (10)

Now, (10) and (9) give us that

{0} = N[g≤0](x) = Nx+KerB(x) = (KerB)◦.

5



So, KerB = IRn, which gives us that B = 0. Then, g(x) = bT x + β ≥ 0, but [g ≤ 0] 6= ∅,
so, we obtain that b = 0 and β = 0. Thus g ≡ 0. This is a contradiction.

[(iii) ⇒ (i)] This always holds by the S-lemma. 2

As an application of Theorem 3.1 we derive the following characterization of La-

grangian duality for a quadratic minimization over a single quadratic constraint in terms

of Slater’s condition.

Theorem 3.2 Let g be a quadratic function that is not identically zero. Then, the fol-

lowing statements are equivalent:

(i) For each quadratic function f ,

inf{f(x) : g(x) ≤ 0} = max
λ≥0

min
x∈Rn

{f(x) + λg(x)}.

(ii) There exists x0 ∈ Rn such that g(x0) < 0.

Proof. [(i) ⇒ (ii)] Suppose that the Slater condition fails. Then, by Theorem 3.1, there

exists a quadratic function f0 : Rn → IR, such that g(x) ≤ 0 ⇒ f0(x) ≥ 0, and there

exists x0 ∈ Rn such that f0(x0) + λg(x0) < 0, ∀λ ≥ 0. This implies that

inf{f0(x) : g(x) ≤ 0} ≥ 0 and max
λ≥0

min
x∈Rn

{f0(x) + λg(x)} < 0.

This contradicts (i).

[(ii) ⇒ (i)]. Firstly, note that the following weak duality inequality

inf{f(x) : g(x) ≤ 0} ≥ max
λ≥0

min
x∈Rn

{f(x) + λg(x)}

always holds. If r := inf{f(x) : g(x) ≤ 0} = −∞, then (i) holds trivially. Without loss of

generality, we assume that r = inf{f(x) : g(x) ≤ 0} > −∞. Then, g(x) ≤ 0 ⇒ f(x)−r ≥
0. It follows from Theorem 3.1 that there exists λ̄ ≥ 0 such that f(x)+λ̄g(x) ≥ r, ∀x ∈ Rn.

Thus, maxλ≥0 minx∈Rn{f(x) + λg(x)} ≥ minx∈Rn{f(x) + λ̄g(x)} ≥ r. This gives that

inf{f(x) : g(x) ≤ 0} = max
λ≥0

min
x∈Rn

{f(x) + λg(x)}.

2

The following example illustrates that the S-lemma fails due to the absence of the

Slater condition. However, some regularized forms of S-lemma still hold.
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Example 3.1 Let f(x) = −2x and g(x) = x2. Then, clearly,

g(x) ≤ 0 ⇒ f(x) ≥ 0.

But, there exists no λ ≥ 0 such that f(x) + λg(x) ≥ 0 for all x ∈ R, as f(x) + λg(x) =

−2x + λx2 = x(λx − 2), for any λ ≥ 0. So, the S-lemma fails. However, the following

regularized versions of the S-lemma hold:

(1) (∃{λk} ⊆ R+) d(Hf + λkHg, S
n+1
+ ) → 0.

(2) (∀ε > 0)(∃λε ≥ 0)(∀x ∈ Rn) f(x) + λεg(x) + ε(‖x‖2 + 1) ≥ 0.

Indeed, for each k ∈ N, let λk = k and

Ak :=

(
2k −1

−1 2
k

)
∈ S2

+.

Then,

Hf + λkHg =

(
2k −1

−1 0

)
and d(Hf + λkHg, S

2
+) ≤ ‖(Hf + λkHg)− Ak‖ =

2

k
→ 0.

Therefore, (1) holds. To see (2), let ε > 0, choose λε = 2(1
ε
− ε) if ε ∈ (0, 1), and λε = 1 if

ε ≥ 1. Then, for each ε ∈ (0, 1)

f(x) + λεg(x) + ε(|x|2 + 1) = −2x + (
2

ε
− ε)x2 + ε

= (
2

ε
− ε)(x− ε

2− ε2
)2 +

ε(1− ε2)

2− ε2
≥ 0,

and for each ε ≥ 1,

f(x) + λεg(x) + ε(|x|2 + 1) = −2x + (1 + ε)x2 + ε

= (1 + ε)(x− 1

1 + ε
)2 + (ε− 1

1 + ε
) ≥ 0.

This example prompts us to examine a regularized version of the S-lemma without

the Slater condition.
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4 Regularized S-Lemma without Slater’s Condition

In this section, we establish a regularized version of the S-lemma allowing applications

without the Slater condition. Consider two non-homogeneous quadratic functions f, g,

where f(x) = xT Ax + aT x + α and g(x) = xT Bx + bT x + β, where A, B ∈ Sn, a, b ∈
Rn, α, β ∈ R.

Lemma 4.1 Let f, g : Rn → R be quadratic functions with [g ≤ 0] 6= ∅. Then, the

following two statements are equivalent:

(i) (∃ {λk} ⊆ R+) d(Hf + λkHg, S
n+1
+ ) → 0.

(ii) (∀ ε > 0) (∃λε ≥ 0) (∀x ∈ Rn) f(x) + λεg(x) + ε(‖x‖2 + 1) ≥ 0.

Proof. [(i) ⇒ (ii)] Suppose that (i) holds. Let ε > 0. Then, there exists λε ≥ 0 such

that

d(Hf + λεHg, S
n+1
+ ) ≤ ε.

Thus, there exists Aε ∈ Sn+1
+ such that ‖(Hf + λεHg)− Aε‖ ≤ ε. This implies that

f(x) + λεg(x) =

(
x

1

)T (
Hf + λεHg

)(x

1

)

=

(
x

1

)T (
(Hf + λεHg)− Aε

)(x

1

)
+

(
x

1

)T

Aε

(
x

1

)
≥ −ε(‖x‖2 + 1).

Thus (ii) holds.

[(ii) ⇒ (i)] Suppose that (ii) holds. Let εk = 1
k
, k ∈ IN. Then, there exists λk ⊆

R+ such that f(x) + λkg(x) + εk(‖x‖2 + 1) ≥ 0 for each x ∈ Rn. This implies that

Hf + λkHg + εkIn+1 � 0. Therefore, d(Hf + λkHg, S
n+1
+ ) ≤ ‖εkIn+1‖. Hence, (i) holds by

letting k →∞. 2

Theorem 4.1 (Regularized S-lemma) Let f, g : Rn → R be quadratic functions with

[g ≤ 0] 6= ∅. Then, the following two statements are equivalent:

(i) g(x) ≤ 0 ⇒ f(x) ≥ 0 .

(ii) (∀ ε > 0) (∃λε ≥ 0) (∀x ∈ Rn) f(x) + λεg(x) + ε(‖x‖2 + 1) ≥ 0.

Proof. [(ii) ⇒ (i)]. Let x ∈ [g ≤ 0]. Let ε > 0. Then, there exists λε ≥ 0 such that

f(x) ≥ λεg(x)− ε(‖x‖2 + 1) ≥ −ε(‖x‖2 + 1).
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Letting ε → 0, we obtain that f(x) ≥ 0. Hence, (i) holds.

[(i) ⇒ (ii)] We consider two cases:

Case 1: Let f, g be homogeneous functions defined by f(x) = xT Ax and g(x) = xT Bx

where A, B ∈ Sn.

If n = 2, then we have (0, 0) /∈ {(f(x), g(x)) : x ∈ R2} + intR+ × R+ (otherwise,

there exists x0 such that f(x0) < 0 and g(x0) ≤ 0 which contradicts to (i)). Then,

by Lemma 2.2, (0, 0) /∈ {(A · X,B · X) : X ∈ S2
+} + intR+ × R+. In other words,

X ∈ S2
+, B ·X ≤ 0 ⇒ A ·X ≥ 0. This implies that −A ∈ {X ∈ S2

+ : B ·X ≤ 0}◦. Note

from (2) that {X ∈ S2
+ : B · X ≤ 0}◦ = −S2

+ +
⋃

λ≥0 λB. It now follows that, for each

ε > 0, there exists λε ≥ 0 and Pε ∈ S2
+ such that ‖(A + λεB) − Pε‖ ≤ ε. Thus for each

x ∈ Rn

f(x) + λεg(x) = xT (A + λεB)x = xT Pεx + xT
(
(A + λεB)− Pε

)
x ≥ −ε‖x‖2.

Thus, (ii) holds in this case.

Let n 6= 2. Define a set V ⊆ R2 by

V := {(f(x), g(x)) | ‖x‖ = 1}+ R2
+.

Then V is a closed convex set. Indeed, if n = 1 then {(f(x), g(x)) | ‖x‖ = 1} is a singleton.

Then V is clearly closed and convex. If n ≥ 3. it follows from Brickman’s theorem (Lemma

2.1) that V is also closed and convex, as the Minkowski sum of a compact convex set and

a closed convex set is closed and convex.

Fix ε > 0. Then (−ε, 0) /∈ V. Otherwise, there exists ‖x0‖ = 1 such that f(x0) ≤
−ε < 0 and g(x0) ≤ 0, which contradicts (i). Then, by the strict separation theorem,

there exist r ∈ R, (λ1, λ2) ∈ R2\{(0, 0)} such that for all (a1, a2) ∈ V

−λ1ε < r < λ1a1 + λ2a2.

In particular, one has (λ1, λ2) ∈ R2
+\{(0, 0)} and for all x ∈ Rn with ‖x‖ = 1

−λ1ε < r < λ1f(x) + λ2g(x). (11)

Next, we show that there exists λε ≥ 0 such that

A + λεB + εIn � 0. (12)

Granting this we obtain that f(x) + λεg(x) + ε‖x‖2 ≥ 0 for all x ∈ Rn. Thus (ii) holds.

To see the claim, we consider two subcases:
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Subcase 1: If λ1 = 0, then λ2 > 0. It follows from (11) that for each x ∈ Rn with

‖x‖ = 1, xT Bx = g(x) > r
λ2

> 0. Thus B is positive definite and hence there exists λ0

(large enough) such that A + λ0B � 0. Therefore, the claim holds by setting λε = λ0.

Subcase 2: Suppose that λ1 > 0. It follows from (11) that for each x ∈ Rn with

‖x‖ = 1

0 ≤ λ1f(x) + λ2g(x) + λ1ε = λ1f(x) + λ2g(x) + λ1ε‖x‖2.

Thus, for each x ∈ Rn, f(x) + λ2

λ1
g(x) + ε‖x‖2 ≥ 0. Setting λε = λ2

λ1
, it follows that

A + λεB + εIn � 0 and the claim follows.

Case 2: Let f(x) = xT Ax + aT x + α and g(x) = xT Bx + bT x + β. Consider the

following homogeneous functions over Rn+1, generated by f and g respectively:

f(x, ρ) = xT Ax + ρaT x + ρ2α =

(
x

ρ

)T

Hf

(
x

ρ

)
, (13)

g(x, ρ) = xT Bx + ρbT x + ρ2β =

(
x

ρ

)T

Hg

(
x

ρ

)
. (14)

Next, we claim that g(x, ρ) ≤ 0 ⇒ f(x, ρ) ≥ 0. Granting this, by Case 1, we obtain that

(∀ ε > 0), (∃λε ≥ 0) (∀(x, ρ) ∈ Rn+1) f(x, ρ) + λεg(x, ρ) + ε
2
(‖(x, ρ)‖2 + 1) ≥ 0. Letting

ρ = 1, we get that (∀ ε > 0) (∃λε ≥ 0) (∀x ∈ Rn) f(x) + λεg(x) ≥ − ε
2
(‖x‖2 + 2) ≥

−ε(‖x‖2 + 1) ≥ 0. Thus (ii) holds.

To see our claim, we proceed by the method of contradiction. Suppose that there

exists (x0, ρ0) ∈ Rn × R such that f(x0, ρ0) < 0 and g(x0, ρ0) ≤ 0,. If ρ 6= 0, then

f(x0

ρ0
) = ρ−2

0 f(x0, ρ0) < 0 and g(x0

ρ0
) = ρ−2

0 g(x0, ρ0) ≤ 0 which contradicts to assumption

(i). If ρ = 0, then xT
0 Ax0 < 0 and xT

0 Bx0 ≤ 0. Now, fix an x with g(x) ≤ 0. It can be

verify that, for all t ∈ R,

f(tx0+x) = t2xT
0 Ax0+2t(a+Ax)T x0+f(x) and g(tx0+x) = t2xT

0 Bx0+2t(b+Bx)T x0+g(x).

We now split the discussion into two subcases: Subcase 1: (b + Bx)T x0 ≤ 0; Subcase 2:

(b + Bx)T x0 ≥ 0.

Suppose that subcase 1 holds. Since xT
0 Ax0 < 0, for all t > 0 large enough one has

f(tx0 + x) < 0. Moreover, since xT
0 Bx0 ≤ 0, (b + Bx)T x0 ≤ 0 and g(x) ≤ 0

g(tx0 + x) = t2xT
0 Bx0 + 2t(b + Bx)T x0 + g(x) ≤ 0.

This contradicts (i).
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Suppose that the subcase 2 holds. Then, similarly, consider the point −tx0 + x with

t > 0 large enough. We obtain that f(−tx0 + x) < 0 and g(−tx0 + x) ≤ 0. This also

contradicts (i). 2

In the following corollary, we see that, in Theorem 4.1, if we further assume the Slater

condition holds then the regularized S-lemma collapses to the standard S-lemma.

Corollary 4.1 (S-lemma) Let f, g : Rn → R be quadratic functions, defined by f(x) =

xT Ax + aT x + α and g(x) = xT Bx + bT x + β, A, B ∈ Sn, a, b ∈ Rn and α, β ∈ R. Let

Hf , Hg be defined as in (8). Suppose that [g ≤ 0] 6= ∅ and there exists x0 ∈ Rn such that

g(x0) < 0. Then, the following statements are equivalent:

(i) g(x) ≤ 0 ⇒ f(x) ≥ 0 .

(ii) (∃λ ≥ 0) f(x) + λg(x) ≥ 0.

(iii) (∃λ ≥ 0) Hf + λHg � 0.

(iv) (∀ ε > 0) (∃λε ≥ 0) (∀x ∈ Rn) f(x) + λεg(x) + ε(‖x‖2 + 1) ≥ 0.

Proof. Note that (ii) ⇔ (iii) and (iii) ⇒ (iv) always holds (by Lemma 4.1). Since

(i) ⇔ (iv) (by Theorem 4.1), it suffices to show that (iv) ⇒ (iii).

[(iv) ⇒ (iii)] Suppose that (iv) holds. By Lemma 4.1, ∃ {λk} ⊆ R+, d(Hf+λkHg, S
n+1
+ ) →

0. This implies that

Hf ∈ Sn+1
+ +

⋃
λ≥0

λ(−Hg).

Next, we show that the set Sn+1
+ +

⋃
λ≥0 λ(−Hg) is indeed closed. To see this, let Zk =

Pk +λk(−Hg) with Zk → Z where Pk ∈ Sn+1
+ and λk ≥ 0. Let X0 =

(
x0

1

)(
x0

1

)T

, where

x0 ∈ IRn. Then

0 ≤

(
x0

1

)T

Pk

(
x0

1

)
= Pk ·X0 = (Zk + λkHg) ·X0 = Zk ·X0 + λkg(x0).

Since g(x0) < 0, it follows that 0 ≤ λk ≤ Zk·X0

−g(x0)
. Since Zk → Z (and hence bounded),

we see that λk is bounded. By passing to subsequence, we have λk → λ0 ≥ 0. Thus

Pk = Zk + λkHg → Z + λ0Hg ∈ Sn+1
+ , and so,

Z = (Z + λ0Hg) + λ0(−Hg) ∈ Sn+1
+ +

⋃
λ≥0

λ(−Hg).

Thus Sn+1
+ +

⋃
λ≥0 λ(−Hg) is closed. Therefore, one has

Hf ∈ Sn+1
+ +

⋃
λ≥0

λ(−Hg).
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Then, there exists λ ≥ 0 such that Hf + λHg � 0. 2

Consider the quadratic minimization problem:

(QP ) min
x∈IRn

f(x)

s.t. g(x) ≤ 0,

where f and g are quadratic functions defined by f(x) = xT Ax + aT x + α and g(x) =

xT Bx + bT x + β, where A, B ∈ Sn, a, b ∈ Rn, α, β ∈ R.

The following lemma on the relationship between subdifferentials and ε-subdifferentials

will be used later to derive a sequential characterization of global optimality of (QP )

without a constraint qualification.

Lemma 4.2 (Borwein [23, Theorem 3.1.1]) Let f be a continuous convex function

on Rn. Let ε > 0, β ≥ 0 and x∗0 ∈ ∂εf(x0). Then there exist xε, x
∗
ε ∈ Rn such that

x∗ε ∈ ∂f(xε), ‖xε − x0‖ ≤
√

ε

|f(xε)− f(x0)| ≤
√

ε(
√

ε + β−1) and ‖x∗ε − x∗0‖ ≤
√

ε(1 + β‖x∗0‖).

Theorem 4.2 (Necessary and Sufficient Conditions for Global Optimality) For (QP), let

x ∈ [g ≤ 0]. Then the following statements are equivalent:

(i) x is a global minimizer of (QP).

(ii) There exist {xk} ⊂ IRn and {λk} ⊆ R+ such that

xk − x → 0, λkg(xk) → 0, ∇(f + λkg)(xk) → 0 and d(A + λkB, Sn
+) → 0.

Proof. [(i) ⇒ (ii)]. Let x be a global minimizer of (QP). Then, g(x) ≤ 0 ⇒ f(x)−f(x) ≥
0. Let εk = 1

k
, k ∈ IN. Then by Theorem 4.1 there exist λk ⊆ R+ such that for each

x ∈ Rn

h(x) := f(x)− f(x) + λkg(x) + εk(‖x‖2 + 1) ≥ 0. (15)

In particular, one has

0 ≥ λkg(x) ≥ −εk‖x‖2 − εk. (16)

Note that as for each x ∈ IRn, h(x) ≥ 0,

∇2h = 2(A + λkB + εkIn) � 0.

12



This implies that d(A + λkB, Sn
+) ≤ ‖εkIn‖ → 0, as k →∞.

On the other hand, from (16) and (15), for each x ∈ Rn,

h(x)− h(x) =
(
f(x)− f(x) + λkg(x) + εk‖x‖2

)
− (λkg(x) + εk‖x‖2) ≥ −εk − εk‖x‖2.

Define ηk = εk + εk‖x‖2 > 0. Then, 0 ∈ ∂ηk
h(x) and ηk → 0 as k →∞. From Borwein’s

Theorem (letting β = 1, ε = ηk and x∗0 = 0), there exist xk such that ‖xk − x‖ ≤ √
ηk,

|h(x)− h(xk)| ≤ ηk +
√

ηk and

0 ∈ ∂h(xk) +
√

ηkB = ∇(f + λkg)(xk) + 2εkxk +
√

ηkB,

where B denotes the closed unit ball in Rn. Since εk → 0 and ηk → 0, as k →∞, xk → x,

∇(f + λkg)(xk) → 0. To finish the proof, it suffices to show that limk→∞ λkg(xk) = 0. To

see this, since |h(x)− h(xk)| ≤ ηk +
√

ηk, one has

|(λkg(x) + εk‖x‖2)− (f(xk)− f(x) + λkg(xk) + εk‖xk‖2)| ≤ ηk +
√

ηk.

This together with xk → x, εk → 0 and ηk → 0 implies that limk→∞ λk(g(x)− g(xk)) = 0.

It follows from (16) that

lim
k→∞

λkg(xk) = lim
k→∞

λkg(x) = 0.

[(ii) ⇒ (i)] We proceed by the method of contradiction. Suppose that there exists x0

such that g(x0) ≤ 0 and f(x0) < f(x). From (ii), there exist xk → x, λk ⊆ R+ with

λkg(xk) → 0 such that

∇(f + λkg)(xk) → 0 and d(A + λkB, Sn
+) → 0.

Note that

f(x0)− f(x) =
(
f(x0) + λkg(x0)

)
−
(
f(xk) + λkg(xk)

)
+ (f(xk)− f(x)) + λkg(xk)− λkg(x0)

≥
(
f(x0) + λkg(x0)

)
−
(
f(xk) + λkg(xk)

)
+ (f(xk)− f(x)) + λkg(xk)

=
(
∇(f + λkg)(xk)

)T
(x0 − xk) +

1

2
(x0 − xk)

T (A + λkB)(x0 − xk)

+(f(xk)− f(x)) + λkg(xk),

where the inequality holds since λk ≥ 0 and g(x0) ≤ 0. Now, since xk → x, ∇(f +

λkg)(xk) → 0, λkg(xk) → 0 and f(x0) < f(x), by passing to upper limit, we have

lim sup
k→∞

1

2
(x0 − xk)

T (A + λkB)(x0 − xk) ≤ f(x0)− f(x) < 0. (17)
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On the other hand, since d(A+λkB, Sn
+) → 0, there exist Pk ∈ Sn

+ such that ‖(A+λkB)−
Pk‖ → 0. Thus, we have

lim sup
k→∞

1

2
(x0 − xk)

T (A + λkB)(x0 − xk)

= lim sup
k→∞

(
1

2
(x0 − xk)

T (A + λkB − Pk)(x0 − xk) +
1

2
(x0 − xk)

T Pk(x0 − xk)

)
≥ lim sup

k→∞

1

2
(x0 − xk)

T (A + λkB − Pk)(x0 − xk) = 0.

This contradicts (17). 2
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