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Abstract. A popular and classical method for finding the best rank one approximation of a real
tensor is the higher order power method (HOPM). It is known in the literature that the iterative
sequence generated by HOPM converges globally, while the convergence rate can be superlinear,
linear or sublinear. In this paper, we examine the convergence rate of HOPM in solving the best
rank one approximation problem of real tensors. We first show that the iterative sequence of HOPM
always converges globally and provide an explicit eventual sublinear convergence rate. The sublinear
convergence rate estimate is in terms of the dimension and the order of the underlying tensor space.
Then, we examine the concept of nondegenerate singular vector tuples and show that, if the sequence
of HOPM converges to a nondegenerate singular vector tuple, then the global convergence rate is
R-linear. We show that, for almost all tensors (in the sense of Lebesgue measure), all the singular
vector tuples are nondegenerate, and so, the HOPM “typically” exhibits global R-linear convergence
rate. Moreover, without any regularity assumption, we establish that the sequence generated by
HOPM always converges globally and R-linearly for orthogonally decomposable tensors with order
at least 3. We achieved this by showing that each nonzero singular vector tuple of an orthogonally
decomposable tensor with order at least 3 is nondegenerate.

1. Introduction

As generalizations of matrices, tensors (a.k.a. hypermatrices or multi-way arrays) are ubiquitous
and inevitable in modeling and scientific computing in applied sciences [28, 30, 36, 37]. Among the
many aspects on the developments of tensors in recent years, tensor approximations/decompositions
and their related topics have been becoming the focus, see [8, 14, 35, 36] and references therein.
The applications of these techniques are diverse and broad, including computational complexity
[37], data analysis [11], pattern recognition [2], principal component analysis [9, 12, 13], scientific
computing [1,10], signal processing [16], etc. We refer interested readers to the surveys [29,35] and
books [30,37], and references therein for more details.

One of the important problems in tensor approximation and tensor decomposition areas is the
best rank one approximation problem which has many important applications in signal process-
ing [9, 19]. Mathematically, the best rank one approximation of a tensor is to find a rank one
tensor so that the deviation (or approximation error) computed by subtracting the rank one ap-
proximation from the given tensor has minimum Hilbert-Schmidt norm (minimization formulation,
cf. (5)). It has an equivalent maximization problem formulation [18] (cf. (6)). Unlike many tensor
approximation or decomposition problems which are in general ill-posed and computationally hard
problems [20,31], the best rank one approximation problems of tensors are always well-posed [18,20].
Due to its importance, the best rank one approximations problem of tensors has attracted a lot
of attentions. The literature of this problem is vast, and ranges from algorithm developments
and their convergence properties [18, 33, 58–60, 63] to applications [1, 18, 20]. An important class
of structured tensors which deserves special attentions is the so-called orthogonally decomposable
tensors. This class of tensors arises from machine learning with latent variables [2], blind source
separation [12] and statistics [13], and admits many highly desired features such as unique rank
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decompositions which distinguishes from general tensors. Therefore, understanding orthogonally
decomposable tensors has become an important research direction from both theoretical and com-
putational point of view [34,63]. As we will see later, the theory developed in this article will also
offer new insights to this important class of tensors.

A popular and classical method for finding the best rank one approximation of a real tensor
is the higher order power method (HOPM). To the best knowledge of the authors, the higher
order power method (HOPM) for solving the best rank one approximation problem based on the
maximization formulation was firstly proposed by De Lathauwer, De Moor, and Vandewalle in [18].
The convergence properties for this method in the symmetric tensor cases were studied extensively
by Kofidis and Regalia [33] under a convexity assumption. The higher order power method in [18] is
an application of the classical nonlinear block Gauss-Seidel (coordinate descent) method [49] to the
maximization formulation of the best rank one approximation problem of tensors. When the block
Gauss-Seidel (coordinate descent) method is applied to the equivalent minimization formulation, it
yields the so-called alternating least square method (ALS). As pointed out in [59], these two methods
are actually equivalent in the sense that they will generate the same iterative sequence up to scaling
given the same initialization. Mohlenkamp [45] studied a general alternating least square method
and show that any limiting point of the iterative sequence generated by this method is a singular
vector tuple of the tensor [43]. Later on, Wang and Chu [60] gave a rigorous analysis establishing
the global convergence of the iterative sequence for generic tensors. The global convergence is
completely solved by Uschmajew [59], who proved that the global convergence occurs without any
assumption by using  Lojasiewicz’s inequality. He also pointed out that a local convergence rate
could be given if one knows the  Lojasiewicz exponent of the objective function which is however
hard to estimate or unknown in general [3, 5].

The convergence rate for the HOPM in solving best rank one approximation problem of tensors is
much more subtle. In the literature, Zhang and Golub [63] studied the local quadratic convergence
of a Newton method under a nonsingularity assumption, while there is no theoretical conclusion on
which class of tensors satisfying the nonsingularity assumption. Uschmajew [58] also established
a locally linear convergence result under an assumption on the rank of the Hessian matrix of the
objective function based on a variation of the minimization formulation for HOPM/ALS. Interest-
ingly, this assumption is fulfilled if the Euclidean distance between the given tensor A (with order d)

and the set of rank one tensors is strictly smaller than ‖A‖F√
3−2/d

. This is equivalent to saying that the

best approximation ratio of this tensor in the sense of [51] is no smaller than
√

2d−2
3d−2 . Unfortunately,

in general, the best approximation ratio also depends on the dimensions of the tensor space and is

typically much smaller than
√

2d−2
3d−2 [51]. Very recently, Espig and Khachatryan [24], and Espig,

Hackbusch and Khachatryan [23] thoroughly examined the behavior of HOPM/ALS and gave a
detailed analysis analyzing the global convergence rate, under a suitable regularity assumption. In
particular, they provided concrete examples as well as classes of structured tensors, and showed
that the global convergence rate of HOPM/ALS can be superlinear, linear or sublinear under the
prescribed regularity assumption. Thus, one cannot always expect an overall linearly convergent
phenomena.

Despite the above significant contributions, there are still several important questions need to be
answered. For example, can we establish the sublinear convergence with an explicit overall global
convergence rate estimate for HOPM in solving best rank one approximation problems for tensors?
Can we derive the linear convergence of HOPM for almost all tensors1? Can we identify certain
important classes of tensors so that, without assuming any regularity assumption, HOPM always
exhibits linear convergence for this particular classes of tensors?

1Here, a property holds for almost all tensors means that the set of tensors for which the property does not hold
is a set of Lebesgue measure zero.
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The purpose of this paper is to examine the convergence rate for HOPM in solving the best rank
one approximation for real tensors, and provide answers for the above questions. In particular, the
main contributions of this article are

(1) We establish an overall sublinear convergence of HOPM in solving the best rank one approx-
imation for real tensors, and provide an explicit sublinear convergence rate in terms of the
dimension of the underlying space and the order of the tensor (Theorem 3.2). Interestingly,
the derived convergence rate estimate of the objective value sequence is sharper than the
usual convergence rate established for first-order algorithms in optimization literature.

(2) Then, we examine the concept of nondegenerate singular vector tuples and show that,
if the sequence of HOPM converges to a nondegenerate singular vector tuple, then the
global convergence rate is R-linear. Our result does not require the limit point to be a
local/global solution of the corresponding optimization formulation, and so, distinguishes
with the sufficient conditions for linear convergence in the literature (e.g. [58, 63]). More
importantly, we further justify that, for almost all tensors, each of its singular vector tuples
is nondegenerate. As a result, the HOPM typically exhibits global R-linear convergence rate
(Theorem 4.4 and Corollary 5.4).

(3) We further demonstrate that, without any regularity assumptions, HOPM always converges
R-linearly for orthogonally decomposable tensors with order at least 3 by establishing the
fact that every nonzero singular vector tuple of an orthogonally decomposable tensor with
order at least 3 is nondegenerate (Proposition 6.5 and Corollary 6.6).

The organization of the rest paper will be as follows. In Section 2, we present preliminaries on
the notation and specific tools that will be used in the later sections including basic operations
on tensors, singular vectors/values of tensors, as well as  Lojasiewicz’s inequalities. In Section 3,
we establish the overall sublinear convergence rate of HOPM for best rank one approximations
to tensors. In Section 4, we obtain that, if the sequence of HOPM converges to a nondegenerate
singular vector tuple, then the global convergence rate is R-linear. In Section 5, we show that
HOPM exhibits R-linear convergence for almost all tensors. We achieve this by showing that, for
almost all tensors, each of its singular vector tuple is nondegenerate. In Section 6, we further study
nondegenerate singular vector tuples, showing that for orthogonally decomposable tensors, each
nonzero singular vector tuple is nondegenerate, and thus the HOPM always exhibits an R-linear
convergence rate.

2. Preliminaries

In this section, preliminaries will be given for the subsequent analysis. Unless otherwise stated,
the focus will be real tensors in the given tensor space Rn1 ⊗ · · · ⊗ Rnd for some positive integers
d ≥ 3 and n1, . . . , nd ≥ 2.

2.1. Notation and mappings. Throughout this paper, ‖ · ‖ is reserved for the Euclidean norm
of a vector. Given a block vector

x := (x1, . . . ,xd) ∈ Rn1 × · · · × Rnd ' Rn1+···+nd with xi ∈ Rni for all i = 1, . . . , d,

we define a mapping τ : Rn1 × · · · × Rnd → Rn1 ⊗ · · · ⊗ Rnd as the rank one tensor with order d
defined by {x1, . . . ,xd}, that is,

τ(x) = x1 ⊗ · · · ⊗ xd. (1)

This mapping is well-known as Segre mapping or Segre embedding [56]. For each i ∈ {1, . . . , d},
the mapping τi : Rn1 × · · · × Rnd → Rn1 ⊗ · · · ⊗ Rni−1 ⊗ Rni+1 ⊗ · · · ⊗ Rnd is defined as

τi(x) = x1 ⊗ · · · ⊗ xi−1 ⊗ xi+1 ⊗ · · · ⊗ xd.
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It is the rank one tensor defined by {x1, . . . ,xd} with xi removed. Given two tensors A,B ∈
Rn1 ⊗ · · · ⊗ Rnd with order d and the entries being indexed as ai1...id and bi1...id respectively, the
inner product is defined as

〈A,B〉 :=

n1∑
i1=1

· · ·
nd∑
id=1

ai1...idbi1...id ,

with the corresponding induced norm given by ‖A‖HS :=
√
〈A,A〉. This norm is a generalization

of the matrix Frobenius norm and is termed as the Hilbert-Schmidt norm. Direct calculation gives
us that

〈A, τ(x)〉 =

n1∑
i1=1

· · ·
nd∑
id=1

ai1...id(x1)i1 . . . (xd)id .

For the sake of notational convention, we also write Aτi(x) as a vector in Rni with its j-th
component being

n1∑
k1=1

· · ·
ni−1∑
ki−1=1

ni+1∑
ki+1=1

· · ·
nd∑
kd=1

ak1...ki−1jki+1...kd(x1)k1 . . . (xi−1)ki−1
(xi+1)ki+1

. . . (xd)kd .

Direct verification shows that, for each i = 1, . . . , d,(
Aτi(x)

)T
xi = 〈A, τ(x)〉. (2)

If i < j, we define Aτi,j(x) as a matrix in Rni×nj whose (s, t)-th component is given as

〈A,x1 ⊗ · · · ⊗ eis ⊗ · · · ⊗ ejt ⊗ · · · ⊗ xd〉

=

n1∑
k1=1

· · ·
ni−1∑
ki−1=1

ni+1∑
ki+1=1

· · ·
nj−1∑
kj−1=1

nj+1∑
kj+1=1

· · ·
nd∑
kd=1

ak1...ki−1ski+1...kj−1tkj+1...kd(x1)k1 . . . (xi−1)ki−1
(xi+1)ki+1

. . . (xj−1)kj−1
(xj+1)kj+1

. . . (xd)kd ,

where eis ∈ Rni is the s-th coordinate vector for all s ∈ {1, . . . , ni} and i ∈ {1, . . . , d}, and Aτi,j(x)
is the transpose of the matrix Aτj,i(x) if i > j.

Let Sn−1 := {z ∈ Rn | ‖z‖ = 1} be the unit sphere in Rn. The following simple lemma shows
that the function τ is Lipschitz continuous on the joint sphere S := Sn1−1 × · · · × Snd−1.

Lemma 2.1. For any x,y ∈ Sn1−1 × · · · × Snd−1, we have

‖τ(x)− τ(y)‖HS ≤
√
d‖x− y‖.

Proof. Let x,y ∈ Sn1−1×· · ·×Snd−1. Note that
∑d

i=1 ‖xi−yi‖ ≤
√
d‖x−y‖. To see the conclusion,

it suffices to show that

‖τ(x)− τ(y)‖HS ≤
d∑
i=1

‖xi − yi‖. (3)

We now establish (3) by the method of mathematical induction on d. Clearly, the conclusion is
trivially true in the case d = 1. Now, suppose the conclusion is true for d = l− 1. We now consider
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the case for d = l. Then, it follows from triangle inequality that

‖τ(x)− τ(y)‖HS = ‖(x1 ⊗ · · · ⊗ xl−1 ⊗ xl)− (x1 ⊗ · · · ⊗ xl−1 ⊗ yl)

+ (x1 ⊗ · · · ⊗ xl−1 ⊗ yl)− (y1 ⊗ · · · ⊗ yl−1 ⊗ yl)‖HS

≤ ‖(x1 ⊗ · · · ⊗ xl−1 ⊗ xl)− (x1 ⊗ · · · ⊗ xl−1 ⊗ yl)‖HS

+ ‖(x1 ⊗ · · · ⊗ xl−1 ⊗ yl)− (y1 ⊗ · · · ⊗ yl−1 ⊗ yl)‖HS

= ‖x1 ⊗ · · · ⊗ xl−1‖HS ‖xl − yl‖+ ‖(x1 ⊗ · · · ⊗ xl−1)− (y1 ⊗ · · · ⊗ yl−1)‖HS ‖yl‖
= ‖xl − yl‖+ ‖x1 ⊗ · · · ⊗ xl−1 − y1 ⊗ · · · ⊗ yl−1‖HS

≤
l∑

i=1

‖xi − yi‖,

where the third equality follows from the spherical constraint, and the last inequality follows from
the induction hypothesis. So, (3) holds, and hence, the conclusion follows. �

Similarly, the function τi is also Lipschitz continuous on the joint sphere.

2.2. Singular vectors. We first give the definitions of singular vector tuples.

Definition 2.2. Given a tensor A ∈ Rn1 ⊗ · · · ⊗ Rnd, a vector tuple x = (x1, . . . ,xd) ∈ S =
Sn1−1× · · · × Snd−1 is called a (real) singular vector tuple of A if it is a critical point of the smooth
function G(x) := 〈A, τ(x)〉 on the joint sphere S. The value of G at a singular vector tuple is called
a singular value. The corresponding vectors {x1, . . . ,xd} are called singular vectors.

The definitions of singular values/vectors were proposed by Lim [43] (a similar treatment for
eigenvalues/eigenvectors was independently introduced by Qi [50]). Given a tensor A ∈ Rn1⊗· · ·⊗
Rnd , we note that, by using Lagrange multiplier method, the definition entails that a singular vector
tuple x = (x1, . . . ,xd) ∈ Sn1−1 × · · · × Snd−1 of A and a corresponding singular value σ satisfy

Aτ1(x) = σx1,
...

Aτd(x) = σxd.

(4)

It is easy to see from (4) that

σ = 〈A, τ(x)〉

for a singular vector tuple x and the corresponding singular value σ. Direct verification shows
that whenever (x1, . . . ,xd) is a singular vector tuple with singular value σ, then (ε1x1, . . . , εdxd) is
also a singular vector tuple of the same singular value for any choices of εi ∈ {−1, 1} as long as∏d
i=1 εi = 1. This is usually viewed as one (class) when we counting the number of singular vector

tuples. Another important symmetric property of the singular vector tuples is that (x1, . . . ,xd)
is a singular vector tuple with singular value σ, if and only if (ε1x1, . . . , εdxd) is a singular vector

tuple with singular value −σ for any choices of εi ∈ {−1, 1} with
∏d
i=1 εi = −1. Thus, for many

situations, one can simply focus on the singular vector tuples with nonnegative singular values (as
in the classical matrix cases).

The next proposition follows from the compactness of the joint sphere and standard optimality
condition theory [54], please see also [63] for the essential proof when d = 3.

Proposition 2.3. Let A ∈ Rn1 ⊗ · · · ⊗ Rnd. Then A has at least one singular vector tuple.
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2.3. Best rank one approximation. Given a tensor A ∈ Rn1 ⊗ · · · ⊗ Rnd , the well-known best
rank one approximation problem can be formulated as (cf. [18, 63])

min
{
‖A − λx1 ⊗ · · · ⊗ xd‖2HS | λ ∈ R, x = (x1, . . . ,xd) ∈ Sn1−1 × · · · × Snd−1

}
. (5)

Direct calculation shows that the best λ for the above problem is 〈A, τ(x)〉 for any given x. Thus,
at a minimizer, we have

‖A − λx1 ⊗ · · · ⊗ xd‖2HS = ‖A‖2HS − 〈A, τ(x)〉2.

Hence, (5) is equivalent to

max
{
〈A, τ(x)〉 | x = (x1, . . . ,xd) ∈ Sn1−1 × · · · × Snd−1

}
. (6)

The next proposition can be proved with the spirit of Proposition 2.3, see also [50].

Proposition 2.4. Let A ∈ Rn1 ⊗ · · · ⊗ Rnd be a real tensor. Then, λx1 ⊗ · · · ⊗ xd with x =
(x1, . . . ,xd) ∈ Sn1−1 × · · · × Snd−1 and λ ≥ 0 is a best rank one approximation of A if and only if
λ = 〈A, τ(x)〉 and x is a singular vector tuple of A corresponding to the largest singular value.

2.4.  Lojasiewicz’s inequality. Next, we recall  Lojasiewicz’s inequalities which will play a key
role in later analysis. The classical  Lojasiewicz inequality for analytic functions are given below
(cf. [44]):

(Classical  Lojasiewicz’s gradient inequality) If f is an analytic function with f(0) = 0
and ∇f(0) = 0, then there exist positive constants µ, κ, and ε such that

‖∇f(x)‖ ≥ µ|f(x)|κ for all ‖x‖ ≤ ε.

As pointed out in [3, 5], it is often difficult to determine the corresponding exponent κ in
 Lojasiewicz’s gradient inequality, and they typically stay unknown. Some estimates of the ex-
ponent κ in the gradient inequality were derived by D’Acunto and Kurdyka in [15] in the case when
f is a polynomial. We will recall this fundamental result in the next lemma, which will play a key
role in our sublinear convergence rate analysis.

Lemma 2.5. ( Lojasiewicz’s Gradient Inequality for Polynomials [15, Theorem 4.2] ) Let f be a
real polynomial on Rn with degree d ∈ N. Suppose that f(0) = 0 and ∇f(0) = 0. Then there exist
constants c, ε > 0 such that for all ‖x‖ ≤ ε we have

‖∇f(x)‖ ≥ c|f(x)|κ with κ = 1− 1

d(3d− 3)n−1
.

We note that the  Lojasiewicz inequality has recently been extended to broad classes of nonsmooth
functions see [3, 5, 41] and references therein. Moreover, the above explicit exponent estimates of
 Lojasiewicz’s inequality for polynomials have also been extended to classes of nonsmooth semi-
algebraic functions [39, 40]. These extensions have found important applications in nonsmooth
optimization, stability analysis and spectral theory of tensors [39,40,42].

3. Sublinear convergence rate analysis for the higher order power method

In this section, we will provide an overall worst case analysis on the convergence rate of the
classical higher order power method for finding the best rank one approximation of a real tensor.
It is known that the whole sequence generated by this algorithm converges to a singular vector
tuple [45, 59], while the convergence rate issue is much more complicated than it is expected [24].
It can converge superlinearly, linearly or sublinearly. On the other hand, the explicit worst case
(sublinear) convergence rate is still an important issue which is not completely understood [58,63].
Our results in this section will provide an answer for this question. We start by recalling the higher
order power method.
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3.1. The higher order power method. Let the ambient tensor space be Rn1 ⊗ · · · ⊗ Rnd . We
now study the iterative sequence generated by a higher order power method for the best rank
one approximation of a given tensor. To avoid triviality, we will only consider nonzero tensors.

For a given nonzero tensor A ∈ Rn1 ⊗ · · · ⊗ Rnd , one can find a vector x(0) = (x
(0)
1 , . . . ,x

(0)
d ) ∈

Rn1 × · · · × Rnd such that 〈A, τ(x(0))〉 6= 0. By normalizing if necessary, we may assume that

x(0) ∈ Sn1−1 × · · · × Snd−1.
Let F : Rn1 × · · · × Rnd → R ∪ {∞} be defined as

F (x) := −〈A, τ(x)〉+
d∑
i=1

δSni−1(xi) for all x ∈ Rn1 × · · · × Rnd , (7)

where δSni−1 is the indicator function of the unit sphere in Rni for i = 1, . . . , d given by

δSni−1(a) =

{
0 if a ∈ Rni , ‖a‖ = 1,

+∞ else.

It is easy to see that F is the summation of a polynomial and an indicator function over a
compact set, and so, is a proper and lower semicontinuous function. Moreover, we have

min{F (x) | x ∈ Rn1 × · · · × Rnd} ⇐⇒ max{〈A, τ(x)〉 | x ∈ Sn1−1 × · · · × Snd−1}
⇐⇒ min{‖A − λτ(x)‖2HS | x ∈ Sn1−1 × · · · × Snd−1 and λ ∈ R}, (8)

of which the last is the best rank one approximation problem for the given tensor A (cf. Section 2.3).
Note that the problem formulation in (8) is different from that in [58, 59], in which the objective
function is 1

2‖A− x1 ⊗ · · · ⊗ xd‖2 and there is no normalizations on xi’s. Thus, if (x1, . . . ,xd) is a

critical point, so is (γ1x1, . . . , γdxd) for any γi’s such that
∏d
i=1 γi = 1. These make us considering

(7) to possibly simplify the analysis on nondegenerate critical points.
A standard algorithm for solving (8) is the higher order power method (HOPM) in the literature

[17,18,59], which can be regarded as a generalization of the classical power method for matrices to
tensors.

Algorithm 3.1. Higher Order Power Method: best rank one approximation of tensors

Input a nonzero tensor A.

Step 0 (Initialization): choose x(0) ∈ Sn1−1 × · · · × Snd−1 such that 〈A, τ(x(0))〉 6= 0. Let

x0,l = x
(0)
l for l = 1, . . . , d, k := 1 and i := 1.

Step 1: Let u(k,i) := (xk,1, . . . ,xk,i−1,0,xk−1,i+1, . . . ,xk−1,d) and

τi(u
(k,i)) = xk,1 ⊗ · · · ⊗ xk,i−1 ⊗ xk−1,i+1 ⊗ · · · ⊗ xk−1,d.

Compute xk,i via

λk,i := ‖Aτi(u(k,i))‖ and xk,i :=
Aτi(u(k,i))

λk,i
. (9)

Form
x(k,i) := (xk,1, . . . ,xk,i,xk−1,i+1, . . . ,xk−1,d). (10)

Step 2: If i = d, then go to Step 3. Otherwise, let i := i+ 1 and go back to Step 1.
Step 3: Let k := k + 1 and i := 1, go back to Step 1.

Note that

τi(x
(k,i)) = τi(u

(k,i)) = xk,1 ⊗ · · · ⊗ xk,i−1 ⊗ xk−1,i+1 ⊗ · · · ⊗ xk−1,d.

The construction of Algorithm 3.1 implies that, for all k = 1, 2, . . . and i = 1, . . . , d,

λk,i = ‖Aτi(x(k,i))‖ and Aτi(x(k,i)) = λk,ixk,i. (11)
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Before proceeding, we make a convention on the notation. We let

x(k) := (xk,1, . . . ,xk,d) and x(k+1,0) := x(k) for all k = 0, 1, . . . .

Thus,

x(k) = x(k,d) = x(k+1,0) for all k = 0, 1, . . . ,

and

Aτi+1(x(k,i)) = Aτi+1(x(k,i+1)) for all k = 0, 1, . . . , and i = 0, . . . , d− 1. (12)

The global convergence of Algorithm 3.1 is known (cf. [59, 60]). We shall establish the explicit
sublinear convergence rate of this algorithm through the next three subsections.

3.2. Sufficient decrease. In the following, we will first show that λk,i > 0 for all k = 1, 2, . . . ,
and i = 1, . . . , d, and hence Algorithm 3.1 is well-defined.

Note that τ1(x(1,1)) = τ1(x(0)) = x
(0)
2 ⊗ · · · ⊗ x

(0)
d . This together with 〈A, τ(x(0))〉 6= 0 implies

that

λ1,1 = ‖Aτ1(x(1,1))‖ = ‖Aτ1(x(0))‖ > 0.

From the second relation of (11), one has, for all k = 1, 2, . . . , and i = 1, . . . , d,

λk,i xk,i = Aτi(x(k,i)),

and so,

λk,i = λk,i‖xk,i‖2 =
(
Aτi(x(k,i))

)T
xk,i = 〈A, τ(x(k,i))〉. (13)

Hence, it is easy to see that λk,i’s are obtained by alternatively minimizing xi’s in (7), and thus
λk,i is monotonically increasing

0 < λ1,1 ≤ · · · ≤ λ1,d ≤ . . . ≤ λk,1 ≤ . . . ≤ λk,d ≤ λk+1,1 ≤ · · · ≤ λk+1,d ≤ . . . . (14)

This shows that the denominator in the quotient of the second relation of (9) is positive, and thus
Algorithm 3.1 is well-defined.

Define λk = λk,d, k = 1, 2, . . .. For the sake of convention, we let

λk+1,0 = λk for all k = 1, 2, . . . .

It is an immediate fact from Algorithm 3.1 that

x(k) ∈ Sn1−1 × · · · × Snd−1, (15)

which with Cauchy-Schwartz’s inequality or a direct calculation implies that

λk ≤ ‖A‖HS for all k = 1, 2, . . . . (16)

This and (14) give us that the sequence {λk} monotonically converges.

It follows from the update of x(k,i) that

λk+1 − λk ≥
d∑
i=1

λ1,1

2
‖xk+1,i − xk,i‖2 =

λ1,1

2
‖x(k+1) − x(k)‖2 for all k = 1, 2, . . . .

Then, it, together with F (x(k)) = −〈A, τ(x(k))〉 = −λk and (15), implies that

F (x(k))− F (x(k+1)) ≥ λ1,1

2
‖x(k) − x(k+1)‖2 for all k = 1, 2, . . . . (17)
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3.3. Relative error. In the following, we will obtain a lower bound of the change of the values
of the objective function F between the current iteration and the next iteration in terms of the
gradient information of a function related to F .

Let

G(x) := 〈A, τ(x)〉. (18)

It follows from the iteration that (cf. (11))

〈A, τ(x(k,i))〉xk,i = Aτi(x(k,i)) for all i = 1, . . . , d and k = 1, 2, . . . .

Let ∇iG(x) ∈ Rni denote the partial gradient of G with respect to the i-th block vector xi.
Therefore, for all i = 1, . . . , d, we have

‖∇iG(x(k))− λkxk,i‖ = ‖Aτi(x(k))− λkxk,i‖

= ‖Aτi(x(k))−Aτi(x(k+1,i)) + λk+1,ixk+1,i − λk+1,ixk,i + λk+1,ixk,i − λkxk,i‖

≤ ‖Aτi(x(k))−Aτi(x(k+1,i))‖+ ‖λk+1,i(xk+1,i − xk,i)‖+ ‖(λk+1,i − λk)xk,i‖

≤ ‖A‖HS‖τi(x(k+1))− τi(x(k+1,i))‖+ ‖A‖HS‖xk+1,i − xk,i‖+ |λk+1,i − λk|,

where the second equality follows from the fact that Aτi(x(k+1,i)) = λk+1,ixk+1,i, the first inequality
is from the triangle inequality and the last inequality follows from (14), (16) and the fact that

‖xk,i‖ = 1. Thus, it follows from (15), λk+1,i = 〈A, τ(x(k+1,i))〉, λk = 〈A, τ(x(k))〉 and Lemma 2.1
that, for each i = 1, . . . , d,

‖∇iG(x(k))− λkxk,i‖ ≤ 2
√
d‖A‖HS‖x(k+1,i) − x(k+1)‖+ ‖A‖HS‖xk+1,i − xk,i‖ ≤ L‖x(k) − x(k+1)‖,

where L = (2
√
d+ 1)‖A‖HS > 0. Therefore,

‖∇G(x(k))− λkx(k)‖ ≤
√
dL‖x(k) − x(k+1)‖. (19)

Combining (19) and (17), we have that

F (x(k))− F (x(k+1)) ≥ λ1,1

2dL2
‖∇G(x(k))− λkx(k)‖2. (20)

3.4. Sublinear convergence rate analysis. Since the iterative sequence {x(k)} is in the compact
set Sn1−1×· · ·×Snd−1, it has an accumulation point x∗ which is also the limit of this sequence [59].

Next, we establish a sublinear convergence with an explicit sublinear convergence rate for the
higher order power method. This complements the work of [59] by providing an explicit estimate of
the sublinear convergence rate. Similar to [59], our approach is built on the tools of  Lojasiewicz’s
inequality. On the other hand, different to [59], our analysis make use of a Lagrangian-type function

of the function F (x) := −〈A, τ(x)〉+
∑d

i=1 δSni−1(xi) given in (7) while [59] used the merit function

G̃(x) := 1
2‖A− τ(x)‖2HS. We also note that it is also possible to deduce sublinear convergence rate

by using the merit function G̃ directly. But, as demonstrated in Remark 3.3, our approach here
produces a much improved sublinear convergence rate estimate.

Theorem 3.2 (Sublinear Convergence Rate of Higher Order Power Method). Let {x(k)}
be generated by Algorithm 3.1 for a given nonzero tensor A ∈ Rn1⊗· · ·⊗Rnd. Let N = n1 + · · ·+nd
and p = d(3d− 3)N . Then, the following statements hold.

(1) Let σk = 〈A, τ(x(k))〉. Then, {σk} globally converges to a singular value of A, denoted

as σ∗, with sublinear convergence rate at least O(k
− p
p−2 ), that is, there exist M1 > 0 and

k0 ∈ N such that for all k ≥ k0

|σk − σ∗| ≤M1 k
− p
p−2 .
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(2) {x(k)} converges to x∗ globally with the sublinear convergence rate at least O(k
− 1
p−2 ), that

is, there exist M2 > 0 and k0 ∈ N such that for all k ≥ k0

‖x(k) − x∗‖ ≤M2 k
− 1
p−2 .

Remark 3.3. Before we proceed to the proof, we note that, one can also obtain a sublinear conver-
gence rate, by using Lemma 2.5 and the merit function suggested in [59]

G̃(x) =
1

2
‖A − τ(x)‖2HS.

On the other hand, this produces a weaker sublinear convergence rate than the result presented
in Theorem 3.2. Indeed, note that G̃ is a real polynomial with dimension N = n1 + · · · + nd
and degree 2d. Direct verification (by following the same method of proof in Theorem 3.2) shows
that this approach leads to the result that the higher order power method generates a sequence

x(k) → x∗ with a sublinear convergence rate O(k
− 1

2d(6d−3)N−1−2 ), whereas the rate of Theorem 3.2

is O(k
− 1

d(3d−3)N−2 ). Noting that, for all d ≥ 3 (and so, N = n1 + . . .+ nd ≥ d ≥ 3),

2d(6d− 3)N−1 − 2 > d(3d− 3)N − 2,

showing that the convergence rate established in Theorem 3.2 is stronger. Moreover, as 6d − 3 >
2(3d− 3) and N = n1 + . . .+ nd ≥ d,

2d(6d− 3)N−1 − 2

d(3d− 3)N − 2
≈ 2N

3d− 3
≥ 2d

3d− 3
→∞ as d→∞ or N →∞.

So, our current approach gives a significant better convergence rate estimate in the case d or N is
large.

Proof. [Proof of (1)] As shown in [59], x(k) → x∗ for some x∗ ∈ Sn1−1 × · · · × Snd−1. Actually,
x∗ is a singular vector tuple with singular value 〈A, τ(x∗)〉 by [45] (see also [59]), i.e., Aτi(x∗) =
〈A, τ(x∗)〉x∗i for all i ∈ {1, . . . , d}. Recall that G(x) = 〈A, τ(x)〉 and define a function H : (Rn1 ×
· · · × Rnd)× R→ R by

H(x, µ) = −G(x) + µ

d∑
i=1

(‖xi‖2 − 1) = −〈A, τ(x)〉+ µ

d∑
i=1

(‖xi‖2 − 1).

Let µ∗ = 〈A,τ(x∗)〉
2 and let Ĥ(x, µ) := H(x, µ) − H(x∗, µ∗). Then, it is clear that Ĥ is a real

polynomial on RN+1 of degree d with Ĥ(x∗, µ∗) = 0 and ∇Ĥ(x∗, µ∗) = 0. Actually, by the

expression of Ĥ(x, µ) and H(x, µ), we then have that

∇Ĥ(x∗, µ∗) = ∇H(x∗, µ∗) = (2µ∗x∗1 −Aτ1(x∗), . . . , 2µ∗x∗d −Aτd(x∗)) = 0.

Applying Lemma 2.5, it then follows that there exist c, ε > 0 such that

‖∇Ĥ(x, µ)‖ ≥ c |Ĥ(x, µ)|τ for all ‖(x, µ)− (x∗, µ∗)‖ ≤ ε,

where τ = 1 −
(
d(3d − 3)N

)−1
. Then, for all x ∈ Sn1−1 × · · · × Snd−1 and µ ∈ R with ‖(x, µ) −

(x∗, µ∗)‖ ≤ ε, one has

‖ − ∇G(x) + 2µx‖2 ≥ c2
(
〈A, τ(x∗)〉 − 〈A, τ(x)〉

)2τ
.

Now, note that |〈A, τ(x)〉− 〈A, τ(x∗)〉| ≤
√
d ‖A‖HS‖x−x∗‖ by Lemma 2.1. By choosing a smaller

ε if necessary, it follows by letting µ = 〈A,τ(x)〉
2 that for all x ∈ Sn1−1×· · ·×Snd−1 with ‖x−x∗‖ ≤ ε

‖ − ∇G(x) + 〈A, τ(x)〉x‖2 ≥ c2
(
〈A, τ(x∗)〉 − 〈A, τ(x)〉

)2τ
= c2

(
F (x)− F (x∗)

)2τ
. (21)
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Recall that F (x) := −〈A, τ(x)〉+
∑d

i=1 δSni−1(xi) given in (7). From (20), we have

F (x(k))− F (x(k+1)) ≥ λ1,1

2dL2
‖∇G(x(k))− λkx(k)‖2

=
λ1,1

2dL2
‖∇G(x(k))− 〈A, τ(x(k))〉x(k)‖2,

where the last equality follows from λk = 〈A, τ(x(k))〉. As x(k) → x∗, there exists k0 such that for

all k ≥ k0, ‖x(k) − x∗‖ ≤ ε. So, this together with (21) implies that, for all k ≥ k0,

F (x(k))− F (x(k+1)) ≥ λ1,1c
2

2dL2

(
F (x(k))− F (x∗)

)2τ
.

Denote βk = F (x(k))− F (x∗) ≥ 0 and M =
λ1,1c2

2dL2 . Then, βk ≥ βk+1 +Mβ2τ
k . Let h(x) = x−2τ . It

follows that
βk − βk+1 ≥Mβ2τ

k = Mh(βk)
−1.

Noting that h(x) = f ′(x) with f(x) = x1−2τ

1−2τ and h is non-increasing on R++, it follows that

M ≤ h(βk)(βk−βk+1)≤
∫ βk

βk+1

h(x)dx = f(βk)−f(βk+1) =
1

1− 2τ

(
β1−2τ
k −β1−2τ

k+1

)
=

1

2τ − 1

(
β1−2τ
k+1 −β

1−2τ
k

)
.

So,
β1−2τ
k ≥M(2τ − 1) + β1−2τ

k−1 ≥ · · · ≥M(2τ − 1)(k − k0) + β1−2τ
k0

,

and hence, there exists C > 0 such that for all k ≥ k0,

0 ≤ βk ≤ C k−
1

2τ−1 .

Now, note that βk = F (x(k))− F (x∗) = −〈A, τ(x(k))〉+ 〈A, τ(x∗)〉 and 1
2τ−1 = 1

1−2p−1 = p
p−2 . So,

for all k ≥ k0,

|σk − σ∗| ≤ C k−
p
p−2 .

Thus, statement of (i) follows.
[Proof of (2)] From (19), one has

‖∇G(x(k))− λkx(k)‖ ≤
√
dL‖x(k) − x(k+1)‖, (22)

and so, (21) gives us that (
F (x(k))− F (x∗)

)τ ≤ √dL
c
‖x(k) − x(k+1)‖.

Let sk = ‖x(k+1) − x(k)‖. Then, we have

βτk ≤
√
dL

c
sk. (23)

Moreover, noting that ϕ : s 7→ −s1−τ is convex on R++, one has

ϕ(βk+1)− ϕ(βk) ≥ ϕ′(βk)(βk+1 − βk).
This gives us that

β1−τ
k − β1−τ

k+1 ≥ (1− τ)β−τk
(
βk − βk+1

)
= (1− τ)β−τk

(
F (x(k))− F (x(k+1))

)
.

This together with (17) shows that

β1−τ
k − β1−τ

k+1 ≥ (1− τ)
λ1,1

2
β−τk ‖x

(k) − x(k+1)‖2 = (1− τ)
λ1,1

2
β−τk s2

k. (24)

Therefore, this, together with (23), implies that there exists M > 0 such that

sk ≤M
(
β1−τ
k − β1−τ

k+1

)
. (25)
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For any N > N0 > k0, summing this from N0 to N gives that

N∑
k=N0

sk ≤M
(
β1−τ
N0
− β1−τ

N+1

)
.

Letting N →∞ and note that βN → 0 as N →∞, we see that

∞∑
k=N0

sk ≤Mβ1−τ
N0

.

This shows that
∑∞

k=1 sk < +∞. Denote ∆k =
∑∞

i=k si, k ≥ k0. Then, from (23), one has

∆k ≤M
(√

dL

c
sk

) 1−τ
τ

.

As 1−τ
τ < 1, there exists C > 0 such that

∆
τ

1−τ
k ≤ Csk = C (∆k −∆k+1).

In other words, one has ∆k ≥ ∆k+1 + 1
C∆

τ
1−τ
k . Then, a similar line method as in part one shows

that there exists C0 > 0 such that

∆k ≤ C0k
− 1−τ

2τ−1 .

Finally, the conclusion follows by noting that ‖x(k) − x∗‖ ≤
∑∞

i=k ‖x(i) − x(i+1)‖ = ∆k. �

Remark 3.4. (Discussion on the convergence rate estimate) In Theorem 3.2, the convergence

rate of the objective function value sequence {〈A, τ(x(k))〉} is O(k
− p
p−2 ) with 1 < p

p−2 < 2. The

convergence rate estimate we obtained here can be regarded as “suboptimal” from optimization
point of view. To see this, we recall that HOPM can be regarded as a special instance of the block
coordinate descent method (see the introduction), and it was demonstrated that the objective func-
tion value of block coordinate descent method (or sometimes referred as alternating minimization
methods) at least exhibits a sublinear convergence rate of O( 1

k ) without assuming strong convexity
assumptions (cf. [4, Theorem 14.11]). Moreover, it is also widely known from the celebrated work of
Nesterov that the optimal rate for first-order methods (which includes the block coordinate descent
method) is O(1/k2) even in the convex setting [47, Section 2.2], and the optimal rate usually can
only be achieved by incorporating additional information and generating the next iterate from both
the previous iterate and the current iterate (known as Nesterov acceleration techniques). Therefore,
one can view our convergence rate estimate as “suboptimal” from optimization point of view.

Finally, note that p = d(3d − 3)N . Our derived sublinear convergence estimate indeed depends
on the dimension N and the order of the underlying tensor space d. In particular, when N or d

increase, the quantity k
− p
p−2 and k

− 1
p−2 decrease. As a result, when N and d increase (and so, the

problem becomes more complex), the derived convergence rate becomes slower.

Remark 3.5. We note from (14), (16) and λk = λk,d = 〈A, τ(x(k)〉 that

0 < λk ≤ λk+1 ≤ ‖A‖HS and λk → 〈A, τ(x∗)〉 > 0.

This shows that the HOPM indeed converges to a singular vector tuple with positive singular value.

Next, we will examine when the higher order power method will exhibit a linear convergence
rate. To achieve this, we will introduce and examine the notion of nondegenerate singular vector
tuples in the next section. This notion plays an important role in establishing the desired linear
convergence rate of higher order power method later on.
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4. Nondegenerate singular vector tuples and linear convergence of higher order
power method

In this section, we introduce the notion of nondegenerate singular vector tuples and show that
it serves as a sufficient condition ensuring the linear convergence of higher order power method.
Our result does not require the limit point to be a local/global solution of the corresponding
optimization formulation, and so, distinguishes with the sufficient conditions for linear convergence
in the literature (e.g. [58, 63]). More importantly, we will further justify, in the next section, that
for almost all tensors (in the sense of Lebesgue measure), each of its singular vector tuples is
nondegenerate. As a result, the HOPM exhibits global R-linear convergence rate for almost all
tensors with any initialization.

We start by recalling some standard facts on smooth manifold. We refer to [7, 21] for basic
notions of functions on a smooth manifold. Let M ⊆ Rn be a manifold and let f : M → R be a
smooth function. Let x ∈M and let Tx(M) be the tangent space of M at x. Denote the geodesic
curve at this point in a tangent direction u ∈ Tx(M) by x(t). The manifold gradient of f on the
manifold M at x ∈ M is denoted as grad(f)(x), and is determined by d

dtf(x(t))|t=0. Similarly,
the manifold Hessian on the manifold M at x ∈ M is denoted as Hess(f)(x), and is determined

by d2

dt2
f(x(t))|t=0. We say a point x ∈ M a nondegenerate critical point of the function f if the

manifold gradient satisfies grad(f)(x) = 0 and the manifold Hessian Hess(f)(x) is a nonsingular
linear operator from the tangent space Tx(M) to itself. We will also need the following lemma,
which is the well-known Morse’s theorem [6,46].

Lemma 4.1. Let M be a smooth manifold with dim(M) = k ≤ n and f : M ⊆ Rn → R be a
smooth function for which x∗ is a nondegenerate critical point. Then, in some neighborhood U of
x∗ in M , there is a local C∞ coordinate system, namely a C∞ diffeomorphism

ϕ : U → V ⊂ Rk

with ϕ(x∗) = 0 and a neighborhood V of 0 such that the map f̃ = f ◦ ϕ−1 takes the form f̃(x) =
f(x∗)− x2

1 − . . .− x2
s + x2

s+1 + . . .+ x2
k for some nonnegative integer s.

The following proposition shows that a form of  Lojasiewicz inequality with exponent 1/2 can be
achieved under the nondegeneracy assumption on the critical points.

Proposition 4.2. Let M be a smooth manifold with dim(M) = k ≤ n and f : M ⊆ Rn → R be a
smooth function for which x∗ is a nondegenerate critical point. Then there exists a neighborhood U
in M of x∗ such that for all x ∈ U

‖ grad(f)(x)‖2 ≥ κ|f(x)− f(x∗)|

for some κ > 0.

Proof. Let us adopt the notation in Lemma 4.1. In the new coordinate system, locally, we have

|f(ϕ−1(y))− f(x∗)| = |f̃(y)− f̃(0)| = |y2
1 + · · ·+ y2

s − y2
s+1 − · · · − y2

k|
≤ ‖y‖2

=
1

4
‖∇f̃(y)‖2

=
1

4

∥∥∥∥∥∥∥
〈grad(f)(x),D(ϕ−1)(y)ξ1〉

...
〈grad(f)(x),D(ϕ−1)(y)ξk〉


∥∥∥∥∥∥∥

2

≤ 1

4
‖D(ϕ−1)(y)‖2‖ grad(f)(x)‖2,
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where ϕ(x) = y, D(ϕ−1)(y) is the differential of ϕ−1 which is a linear mapping from Rk to the
tangent space Tx(M), and ξi ∈ Rk is the i-th basis vector of Rk. Since ϕ is a coordinate system,
D(ϕ−1)(y) = [D(ϕ)(x)]−1 is nonsingular. Thus, ‖D(ϕ−1)(y)‖ is bounded in a small neighborhood
of x∗. Consequently, the result follows. �

Definition 4.3 (Nondegenerate Singular Vector Tuples). We say a singular vector tuple of
A is nondegenerate if x is a nondegenerate critical point of G on S.

Next, we show that the HOPM exhibits R-linear convergence rate when the limit point x∗ is
a nondegenerate singular vector tuple of A. Note that in the special case where x∗ is a local
minimizer of G(x) = 〈A, τ(x)〉, the next Theorem 4.4 reduces to the linear convergence result
established in [58] (similar conclusion was achieved in the cases where x∗ is a global minimizer
in [63, Theorem 4.3]). On the other hand, our next Theorem 4.4 can be applied to the cases
where the limit point x∗ is not a local minima (for example, when it is a saddle point of G).
More importantly, we will justify, in the next section, that our assumption “the limit point x∗ is a
nondegenerate singular vector tuple” is satisfied for almost all tensors.

Theorem 4.4 (Linear Convergence of HOPM under Nondegeneracy). Let {x(k)} be gen-

erated by Algorithm 3.1 for a given nonzero tensor A with x(k) → x∗. Suppose that x∗ is a
nondegenerate singular vector tuple of A. Then, the sequence {x(k)} converges to x∗ globally with
R-linear convergence rate, that is, there exist M > 0, r ∈ (0, 1) and k0 ∈ N such that for all k ≥ k0,

‖x(k) − x∗‖ ≤M rk.

Proof. Let G(x) = 〈A, τ(x)〉 be given as in (18) and let F (x) = −〈A, τ(x)〉+
∑d

i=1 δSni−1(xi) given
in (7). It follows from Definition 4.3 that x∗ is a nondegenerate critical point of G on the joint
sphere. Then, this together with Proposition 4.2 implies that there exists κ > 0 such that

‖ grad(G)(x)‖2 ≥ κ|G(x∗)−G(x)| (26)

for all x ∈ Sn1−1 × · · · × Snd−1 sufficiently close to x∗.
From [22, Section 2.4], we see that the manifold gradient of G at a point x ∈ Sn1−1× · · ·×Snd−1

is

grad(G)(x) = ∇G(x)− diag{∇x1G(x)Tx1I, . . . ,∇xdG(x)TxdI}x, (27)

This implies that

grad(G)(x(k+1)) = ∇G(x(k+1))− diag{∇x1G(x(k+1))Tx
(k+1)
1 I, . . . ,∇xdG(x(k+1))Tx

(k+1)
d I}x(k+1)

= ∇G(x(k+1))− λk+1x
(k+1), (28)

where we used the fact that ∇xiG(x(k+1))Tx
(k+1)
i = 〈Aτi(x(k+1)),x

(k+1)
i 〉 = 〈A, τ(x(k+1))〉 = λk+1.

Let λ∗ = 〈A, τ(x∗)〉 = G(x∗) = −F (x∗). Then, as established in equations (16) and (17),

λk = −F (x(k)) monotonically increases and converges to λ∗. This, together with x(k+1) ∈ Sn1−1 ×
· · · × Snd−1 and (7), implies that

G(x∗)−G(x(k+1)) = F (x(k+1))− F (x∗) ≥ 0. (29)

On the other hand, we have

‖∇iG(x(k+1))− λk+1xk+1,i‖ = ‖Aτi(x(k+1))− λk+1xk+1,i‖

= ‖Aτi(x(k+1))−Aτi(x(k+1,i)) +Aτi(x(k+1,i))− λk+1xk+1,i‖

≤ ‖Aτi(x(k+1))−Aτi(x(k+1,i))‖+ ‖(λk+1,i − λk+1)xk+1,i‖

≤ ‖A‖HS‖τi(x(k+1))− τi(x(k+1,i))‖+ |λk+1,i − λk+1|.
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Similar to (19), we have

‖∇G(x(k+1))− λk+1x
(k+1)‖ ≤

√
dL‖x(k) − x(k+1)‖,

where L = (2
√
d+ 1)‖A‖HS.

Since x(k) → x∗, there exists k0 > 0 such that (26) holds for all k ≥ k0. Thus, for all k ≥ k0 we
have

F (x(k))− F (x(k+1)) ≥ λ1,1

2dL2
‖∇G(x(k+1))− λk+1x

(k+1)‖2

=
λ1,1

2dL2
‖ grad(G)(x(k+1))‖2

≥ λ1,1κ

2dL2

(
F (x(k+1))− F (x∗)

)
,

where the first inequality follows from preceding estimation and (17), the equality is from (28), and
the last inequality from (26) and (29). Thus, for all k ≥ k0

F (x(k+1))− F (x∗) ≤ 2dL2

2dL2 + λ1,1κ

(
F (x(k))− F (x∗)

)
.

It also follows from (17) that for all k ≥ k0

‖x(i+1) − x(i)‖ ≤

√
2

λ1,1

√
F (x(i))− F (x(i+1))

≤

√
2

λ1,1

√
F (x(i))− F (x∗)

≤

√
2

λ1,1

[√
2dL2

2dL2 + λ1,1κ

]i−1√
F (x(1))− F (x∗).

Thus, we have
∑∞

i=k ‖x(i+1) − x(i)‖ < +∞. Since x(k) → x∗,

‖x(k) − x∗‖ ≤
∞∑
i=k

‖x(i+1) − x(i)‖.

This implies that for all k ≥ k0

‖x(k) − x∗‖ ≤

√
2

λ1,1

√
F (x(1))− F (x∗)

1

1−
√

2dL2

2dL2+λ1,1κ

[√
2dL2

2dL2 + λ1,1κ

]k−1

,

which is the claimed R-linear convergence. Thus, the conclusion follows. �

5. Typical linear convergence of higher order power method

In this section, we establish that the HOPM exhibits global R-linear convergence rate for almost
all tensors. We achieve this by showing that, for almost all tensors, each of its singular vector
tuples is nondegenerate. This gives an answer to the “linear convergence” behavior of HOPM
mentioned in the literature, such as in [60, Page 1603]: “We shall not concern ourselves with the
rate of convergence, though it is expected to be linear.”

To do this, we will need the following notion of Morse function and a theorem regarding its
existence. Let M be a smooth manifold, a function f : M → R is called a Morse function if each
critical point of f on M is nondegenerate. The following result on existence of Morse functions is
well-known, see for example [7, Proposition 17.18].
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Lemma 5.1. (Morse function is “typical”) Let M be a manifold of dimension m in Rn. For
almost all a := (a1, . . . , an)T ∈ Rn, the function

f(x) = a1x1 + · · ·+ anxn

is a Morse function on M .

We will also need the following proposition on critical points of functions over two diffeomorphic
smooth manifolds. Recall that two smooth manifolds M1 and M2 are called locally diffeomorphic
if there is a mapping φ : M1 → M2 such that for each point x ∈ M1 there exist a neighborhood
U ⊆ M1 of x and a neighborhood V ⊆ M2 of φ(x) so that the restriction mapping φ : U → V is
a diffeomorphism [21]. In this case, the corresponding φ is called a local diffeomorphism between
M1 and M2.

Proposition 5.2. Let M1 ⊆ Rn1 and M2 ⊂ Rn2 be two diffeomorphic smooth manifolds of the
same dimension m ≤ min{n1, n2} and let φ : M1 →M2 be the corresponding local diffeomorphism.
Let f : M2 → R be a smooth function. Then x ∈M1 is a (nondegenerate) critical point of f ◦ φ on
M1 if and only if φ(x) is a (nondegenerate) critical point of f on M2.

Proof. Let a local coordinate system of M1 in a neighborhood of x be α1, . . . , αm : U1 ⊆ M1 →
V1 ⊆ Rm. Here U1 is a neighborhood of x and V1 a neighborhood of p ∈ Rm such that

(α1(x), . . . , αm(x)) = p.

The inverse of α : U1 → V1 is denoted as β. Similarly, let θ : M2 → Rm be a local coordinate system
of M2 in a neighborhood of φ(x), and η be the inverse of θ with θ(φ(x)) = q for some q ∈ Rm.
The corresponding neighborhoods are respectively U2, V2. As φ being a local diffeomorphism, we
can shrink the neighborhoods if necessary to satisfy U2 = φ(U1). In the following, we always work
in these neighborhoods without tedious repetitions.

Let t = α(x) be the local coordinates of M1, and s = θ(φ(x)) be the local coordinates of M2.
We then have a relation between the two local coordinates

t = α ◦ φ−1 ◦ η(s). (30)

Note that

dαi ∈ TxM1, dφ
−1 : Tφ(x)M2 → TxM1, and dη : Rm → Tφ(x)M2

in the neighborhood of x (as well as φ(x)). We then have

∂tj
∂si

= dαjdφ
−1dη(ei),

where ei is the i-th coordinate vector in Rm. Let the matrix H ∈ Rm×m be defined as

hij =
∂tj
∂si

(q).

So, as a linear operator,

H = dα dφ−1 dη.

Since all of α, φ and η are local diffeomorphisms, we see that H is a nonsingular linear operator.
With the above preparation, we have the identity

(f ◦ φ)(x) = (f ◦ φ ◦ β)(t) = (f ◦ φ ◦ β ◦ α ◦ φ−1 ◦ η)(s) = (f ◦ η)(s).

Since a point on a manifold being a (nondegenerate) critical point of a smooth function is indepen-
dent of the choices of coordinates, it follows that x is a critical point of f ◦ φ on M1 if and only
if

∂(f ◦ φ ◦ β)(t)

∂ti
(p) = 0 for all i ∈ {1, . . . ,m}
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as β(p) = x. Likewise, φ(x) is a critical point of f on M2 if and only if

∂(f ◦ η)(s)

∂si
(q) = 0 for all i ∈ {1, . . . ,m}

as η(q) = φ(x).
However, (cf. (30))

∂(f ◦ η)(s)

∂si
(q) =

∂(f ◦ φ ◦ β ◦ α ◦ φ−1 ◦ η)(s)

∂si
(q)

=

m∑
j=1

∂(f ◦ φ ◦ β)(t)

∂tj
(p)

∂tj
∂si

(q) for all i ∈ {1, . . . ,m} (31)

since p = α ◦ φ−1 ◦ η(q).
Let the vectors a ∈ Rm and b ∈ Rm be defined as

a =

(
∂(f ◦ φ ◦ β)(t)

∂t1
(p), . . . ,

∂(f ◦ φ ◦ β)(t)

∂tm
(p)

)T

,

and

b =

(
∂(f ◦ η)(s)

∂s1
(q), . . . ,

∂(f ◦ η)(s)

∂sm
(q)

)T

.

Then, it follows from (31) that

b = Ha.

As H being nonsingular, we thus conclude that x is a critical point of f ◦ φ on M1 if and only if
φ(x) is a critical point of f on M2.

In the following, we assume that x is a critical point of f ◦ φ on M1, i.e., a = 0. Equivalently,
b = 0.

Let the matrix A ∈ Rm×m be defined as

aij =:
∂2(f ◦ φ ◦ β)(t)

∂ti∂tj
(p) for all i, j ∈ {1, . . . ,m}.

Likewise, let the matrix B ∈ Rm×m be defined as

bij =:
∂2(f ◦ η)(s)

∂si∂sj
(q) for all i, j ∈ {1, . . . ,m}.

We have

bij =
m∑
l=1

m∑
k=1

∂2(f ◦ φ ◦ β)(t)

∂tk∂tl
(p)

∂tk
∂si

(q)
∂tl
∂sj

(q) +
m∑
k=1

∂(f ◦ φ ◦ β)(t)

∂tk
(p)

∂2tk
∂si∂sj

(q)

=

m∑
l=1

m∑
k=1

∂2(f ◦ φ ◦ β)(t)

∂tk∂tl
(p)

∂tk
∂si

(q)
∂tl
∂sj

(q),

where the equality follows from a = 0. Thus,

B = HAHT.

As H being nonsingular, the matrix A is nonsingular if and only if B is nonsingular. In other
words, x is a nondegenerate critical point of f ◦ φ on M1 if and only if φ(x) is a nondegenerate
critical point of f on M2, since degeneracy is independent of the choices of local coordinates. �

Now, we are in the position to present one of our main results, showing that the function G is a
Morse function on the joint sphere for almost all tensors.
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Theorem 5.3 (Singular Vector Tuples are “typically” nondegenerate). For almost all
tensors in Rn1 ⊗ · · · ⊗ Rnd, each of its singular vector tuples is nondegenerate.

Proof. Define

M = {A ∈ Rn1 ⊗ · · · ⊗ Rnd | A = τ(x) with x ∈ S = Sn1−1 × · · · × Snd−1}
be the image of the Segre mapping restricted on the joint sphere S (cf. (1)).

We claim that M is a smooth manifold which is locally diffeomorphic to the joint sphere S, i.e.,
there is a mapping φ : S → M such that for each x ∈ S, there exists a neighborhood U of x in
S such that the restriction φ : U → V is a diffeomorphism for a neighborhood V of M . Granting
this, to conclude the proof, it suffices to show that for almost all tensors A ∈ Rn1 ⊗ · · · ⊗ Rnd , the
function

G(x) = 〈A, τ(x)〉
is a Morse function over the joint sphere S. Let ψ : S → M be the Segre mapping from the joint
sphere to the manifold M , then we have

G(x) = (G̃ ◦ ψ)(x),

where G̃(U) = 〈A,U〉 for all U ∈ Rn1 ⊗ · · · ⊗ Rnd . From Lemma 5.1, we see that G̃ is a Morse
function over the manifold M for almost all A ∈ Rn1 ⊗ · · · ⊗Rnd . Note that ψ is a surjective local
diffeomorphism from S to M . Thus, the conclusion follows from Proposition 5.2.

We now justify our claim that M is a smooth manifold which is locally diffeomorphic to the joint
sphere S. Given a point x = (x1, . . . ,xd) ∈ S, let

ij ∈ argmax{|(xi)j | | j ∈ {1, . . . , ni}} for all i ∈ {1, . . . , d}.
Obviously,

|(xi)ij | ≥
1
√
ni

for all i ∈ {1, . . . , d}.

If we take ε < 1
2 min{ 1√

ni
| i ∈ {1, . . . , n}}, then for every

y ∈ S ∩ {w | ‖w − x‖ ≤ ε}, (32)

we have

sign([ψ(y)]i1...id) = sign([ψ(x)]i1...id), (33)

since (yi)ij ’s have constant sign over the neighborhood (32). In the following, we will show that
ψ : U := S ∩ {w | ‖w− x‖ ≤ ε} →M is a local diffeomorphism from U to V := ψ(U). To see this,
let

T (i1 . . . id) := {A ∈ Rn1 ⊗ · · · ⊗ Rnd | ai1...id 6= 0}.
Then, we have a smooth mapping φi1...id : V ⊂ T (i1 . . . id) ∩M → U ⊂ Rn1 × · · · × Rnd from V to
U as

φi1...id(A) = (y1, . . . ,yd)

where

y1 := κ1
(a1i2...id , . . . , an1i2...id)

T

‖(a1i2...id , . . . , an1i2...id)‖
, . . . ,yd := κd

(ai1i2...1, . . . , ai1i2...nd)
T

‖(ai1i2...1, . . . , ai1i2...nd)‖
, (34)

and κi ∈ {−1, 1} is a constant for all i ∈ {1, . . . , d} such that

φi1...id(ψ(x)) = (x1, . . . ,xd).

It follows from (33) and (34) that φi1...id◦ψ is the identity over U . Moreover, direct verification shows
that ψ ◦ φi1...id equals the identity mapping over U . So, we see that ψ is a local diffeomorphism.
It is well-known that the joint sphere is a smooth manifold. Thus, M is a smooth manifold which

is locally diffeomorphic to the joint sphere which is of dimension
∑d

i=1 ni − d. �
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Corollary 5.4 (Linear convergence of HOPM is “typical”). Let {x(k)} be generated by

Algorithm 3.1 with x(k) → x∗. Then, for almost all A ∈ Rn1 ⊗ · · · ⊗ Rnd, the sequence {x(k)}
converges to x∗ globally with R-linear convergence rate.

Corollary 5.4 shows that, for almost all tensors, the HOPM exhibits global R-linear convergence
rate regardless the initialization. It is also interesting and worth identifying a class of tensors such
that HOPM converges R-linearly for each tensor in this class . We will show that the orthogonally
decomposable tensors form such a class.

6. Orthogonally decomposable tensors

In this section, we show that, without any regularity assumptions, HOPM always converges
R-linearly for orthogonally decomposable tensors with order at least 3. We shall achieve this by
establishing the fact that every nonzero singular vector tuple of an orthogonally decomposable
tensor with order at least 3 is nondegenerate. To establish our desired result, we will further study
nondegenerate singular vector tuples.

Note that the nondegeneracy is defined via the nonsingularity of the manifold Hessian of G on
the joint sphere S. Moreover, the manifold Hessian of G is defined as a linear operator from the
tangent space Tx(S) to itself. As the tangent space depends on the critical point x, it may not be so
convenient to analyze manifold Hessian. Therefore, to obtain further insight of the nondegenerate
singular vector tuples, we will introduce a square system of equations motivated from the defining
equations of singular vector tuples.

To that end, we first rewrite the system of equations for singular vectors of a tensor A into a
square system with respect to the variable vector x as

S(x) :=


Aτ1(x)− 〈A, τ(x)〉x1 = 0,

...

Aτd(x)− 〈A, τ(x)〉xd = 0.

(35)

Here, we emphasize that, unlike in the definition of singular vector tuples, the spherical normal-
ization is not required explicitly any more. On the other hand, it is easy to see that whenever
〈A, τ(x)〉 6= 0, we necessarily have that

xi ∈ Sni−1 = {y ∈ Rni | ‖y‖ = 1} for all i = 1, . . . , d.

However, when 〈A, τ(x)〉 = 0, this automatic normalization for xi’s becomes vacant. In particular,
there exists trivial solutions x ∈ Rn1 × · · · × Rnd with at least two block vectors being zeros and
the rest being arbitrary.

For simplicity, we will abbreviate a singular vector tuple corresponding to a nonzero singular
value as a nonzero singular vector tuple.

Given a continuously differentiable mapping g : Rn → Rn, recall that a solution of the equation
system g(x) = 0 is said to be nonsingular if the Jacobian matrix ∇g(x) is nonsingular. The next
proposition shows that any nonsingular solution of S(x) = 0 associates with a nonzero singular
value, and so, is indeed a nonzero singular vector tuple.

Proposition 6.1 (Nonsingular solutions of (35) associate with nonzero singular value). Let (x1, . . . ,xd)
be a nonsingular solution of S(x) = 0 with σ = 〈A, τ(x)〉. Then σ 6= 0.

Proof. First note that

σ = 〈A, τ(x)〉.
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It is easy to calculate the Jacobian matrix of (35) as

∇xS(x) = −σ diag{I, I, . . . , I}

+


−σx1x

T
1 Aτ1,2(x)− σx1x

T
2 . . . Aτ1,d(x)− σx1x

T
r

Aτ2,1(x)− σx2x
T
1 −σx2x

T
2 . . . Aτ2,d(x)− σx2x

T
d

...
...

. . .
...

Aτd,1(x)− σxdx
T
1 Aτd,2(x)− σxdx

T
2 . . . −σxdx

T
d



=− σ diag{I, I, . . . , I} − σ


x1

x2
...

xd

 [xT
1 xT

2 . . . xT
d

]
+


0 Aτ1,2(x) . . . Aτ1,d(x)

Aτ2,1(x) 0 . . . Aτ2,d(x)
...

...
. . .

...
Aτd,1(x) Aτd,2(x) . . . 0

 . (36)

If σ = 0, then

∇xS(x) =


0 Aτ1,2(x) . . . Aτ1,d(x)

Aτ2,1(x) 0 . . . Aτ2,d(x)
...

...
. . .

...
Aτd,1(x) Aτd,2(x) . . . 0

 .
It is a direct calculation to see that

∇xS(x)x = (d− 1)

Aτ1(x)
...

Aτd(x)

 = (d− 1)σx = 0,

which contradicts the nonsingularity hypothesis. �

Next, we see that nonzero nondegenerate singular vector tuple can be characterized by nonsin-
gular solutions of the algebraic equations S(x) = 0 (cf (36)).

Proposition 6.2 (Characterizing nonzero nondegenerate singular vector tuples via nonsingular
solutions of (36)). Given a tensor A ∈ Rn1 ⊗ · · · ⊗ Rnd, a nonzero singular vector tuple x is
nondegenerate if and only if x is a nonsingular solution of S(x) = 0.

Proof. A direct calculation shows that the manifold Hessian Hess(G)(x) of G at a singular vector
tuple x is given by the formula

〈∆(1),Hess(G)(x)∆(2)〉 =

〈
∆(1),


−σI Aτ1,2(x) . . . Aτ1,d(x)
Aτ2,1(x) −σI . . . Aτ2,d(x)

...
...

. . .
...

Aτd,1(x) Aτd,2(x) . . . −σI

∆(2)

〉
, (37)

for any two tangent vectors ∆(1),∆(2) ∈ Tx1(Sn1−1) × · · · × Txd(Snd−1), and in where σ = G(x).
For each i = 1, . . . , d, let St(ni − 1, ni) be the Stiefel manifold consisting of ni × (ni − 1) matrices
with orthonormal columns, and Pi ∈ St(ni − 1, ni) be such that PT

i xi = 0. Then the columns of
Pi form a basis for the tangent space Txi(Sni−1). Therefore, Hess(G)(x) is singular if and only if
there exist nonzero y = (y1, . . . ,yd) ∈ Rn1−1 × · · · × Rnd−1 and αi ∈ R such that

Hess(G)(x) diag{P1, . . . , Pd}y =
(
α1x

T
1 , . . . , αdx

T
d

)T
.

Note that the manifold Hessian of G is a linear operator from the tangent space Tx1(Sn1−1)×· · ·×
Txd(Snd−1) of the product manifold to itself [22]. So, Hess(G)(x) is singular if and only if there
exist nonzero y = (y1, . . . ,yd) ∈ Rn1−1 × · · · × Rnd−1 such that

Hess(G)(x) diag{P1, . . . , Pd}y = 0.
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Now, suppose that x is a nonsingular solution. Then the matrix ∇xS(x) in (36) is nonsingular,
and so, for any nonzero y = (y1, . . . ,yd) ∈ Rn1−1 × · · · × Rnd−1, we have

0 6= ∇xS(x) diag{P1, . . . , Pd}y = Hess(G)(x) diag{P1, . . . , Pd}y.

This implies that the Hessian Hess(G)(x) is a nonsingular linear operator from the tangent space
to itself. Thus, x is a nondegenerate singular vector tuple.

Conversely, suppose that Hess(G)(x) is a nonsingular linear operator from the tangent space to
itself. We proceed by the method of contradiction and assume that ∇xS(x) is a singular matrix,
i.e., ∇xS(x)z = 0 for some z = (z1, . . . , zd) ∈ Rn1 × · · · × Rnd with z 6= 0. Write zi = αixi + βiui,
i = 1, . . . , d where αi, βi ∈ R and uT

i xi = 0 for all i = 1, . . . , d. Then, we have

∇xS(x)

α1x1 + β1u1
...

αdxd + βdud

 = 0.

On the other hand, a direct calculation shows that

∇xS(x)

α1x1 + β1u1
...

αdxd + βdud

 = −2σ

α1x1
...

αdxd

+ Hess(G)(x)

β1u1
...

βdud

 .
Since Hess(G)(x) maps a tangent vector into the tangent space, if the singular value σ 6= 0, we
must have both α1x1

...
αdxd

 = 0 and Hess(G)(x)

β1u1
...

βdud

 = 0.

This, together with the nonsingularity of Hess(G)(x), implies that βiui = γixi for some γi ∈ R.

It follows that βiui = 0 because if xi 6= 0, then γi =
βiu

T
i xi

‖xi‖2 = 0 and so, βiui = 0. Thus,

αixi = βiui = 0 for all i ∈ {1, . . . , d}. This contradicts the fact that z 6= 0, and so, the conclusion
follows. �

6.1. Orthogonally decomposable tensors. In this subsection, we show that the higher order
power method always exhibits linear convergence when the underlying tensor is orthogonally de-
composable and with order at least 3. To do this, recall that a tensor A ∈ Rn1 ⊗ · · · ⊗Rnd is called
orthogonally decomposable (cf. [34, 52,63] 2) if there exist orthogonal matrices

Ai = [ai,1, . . . ,ai,ni ] ∈ Rni×ni for all i = 1, . . . , d

and numbers λi ∈ R for i = 1, . . . , D0 := min{n1, . . . , nd} such that

A =

D0∑
i=1

λia1,i ⊗ · · · ⊗ ad,i. (38)

Without loss of generality, we can assume that λi ≥ 0 for all i = 1, . . . , D0. Note that some of the
λi’s can be zeros. By eliminating the zeros, we can further assume that a nonzero orthogonally
decomposable tensor takes the form

A =

D∑
i=1

λia1,i ⊗ · · · ⊗ ad,i.

2In [34], this notion was referred as completely orthogonally decomposable tensors.
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with D ≤ D0 := min{n1, . . . , nd} and λi > 0, i = 1, . . . , D. It is worth noting that, for an
orthogonally decomposable tensor with order d ≥ 3, [63] established that its orthogonal decompo-
sition is always unique (up to scaling). This uniqueness feature is not shared by the matrix cases.
Throughout this subsection, we will always assume d ≥ 3.

In the following, we will characterize all the nonzero singular vector tuples of an orthogonally
decomposable tensor. As a preparation, we need the following observation of multilinear orthogonal
invariance of (nondegenerate) singular vector tuples. Let O(ni) ⊂ Rni×ni be the group of orthogonal
matrices and Qi ∈ O(ni) for all i ∈ {1, . . . , d}. For a given A ∈ Rn1 ⊗ · · · ⊗Rnd with A = (aj1...jd),
the matrix-tensor multiplication (Q1, . . . , Qd) · A is defined as a tensor in Rn1 ⊗ · · · ⊗ Rnd with its
component being

[
(Q1, . . . , Qd) · A

]
i1...id

=

n1∑
j1=1

· · ·
nd∑
jd=1

(Q1)i1j1 · · · (Qd)idjdaj1...jd

for all ij ∈ {1, . . . , nj} and j ∈ {1, . . . , d}.

Similar to matrices setting, one has the following multilinear orthogonal invariance property for
singular vectors of tensors.

Proposition 6.3 (Multilinear Orthogonal Invariance). Let A ∈ Rn1 ⊗ · · · ⊗ Rnd and Qi ∈ O(ni)
for all i ∈ {1, . . . , d}. Then, (x1, . . . ,xd) is a singular vector tuple (respectively nondegenerate
singular vector tuple) of A if and only if (Q1x1, . . . , Qdxd) is a singular vector tuple (respectively
nondegenerate singular vector tuple) of (Q1, . . . , Qd) · A.

Proof. The results follow from a direct calculation, in particular noticing that the manifold Hessian
Hess(G)(y) (cf. (37)) for the tensor B := (Q1, . . . , Qd) ·A at the singular vector tuple (y1, . . . ,yd) =
(Q1x1, . . . , Qdxd) is

diag{QT
1 , . . . , Q

T
d }Hess(G)(x) diag{Q1, . . . , Qd}.

�

IfA is an orthogonally decomposable tensor, then there existQi ∈ O(ni) for all i ∈ {1, . . . , d} such
that (Q1, . . . , Qd) · A is a diagonal tensor with the diagonal elements being λi’s and 0’s. It follows
from Proposition 6.3 that it is sufficient to study diagonal tensors for orthogonally decomposable
tensors. Since HOPM finds nonzero singular vector tuples (and hence we consider only nonzero
nondegenerate singular vector tuples), and the sub-vectors indexed by the zero diagonals of the
singular vectors corresponding to a nonzero singular value should be zero, it is without loss of
generality to assume that D ≤ n1 ≤ · · · ≤ nd and A ∈ Rn1 ⊗ · · · ⊗ Rnd is an d-th order diagonal
tensor with the diagonal elements being positive λi’s. In other words,

A =
D∑
i=1

λie
1
i ⊗ · · · ⊗ edi . (39)

where λi > 0, i = 1, . . . , D, and, for each i = 1, . . . , d and j = 1, . . . , D, eij is the unit vector in Rni
whose j-th coordinate is one and the other coordinates are zero.

Recall that the singular vector tuples enjoys the following symmetric property: (x1, . . . ,xd) is a
singular vector tuple with singular value σ, if and only if (ε1x1, . . . , εdxd) is a singular vector tuple

with singular value −σ for any choices of εi ∈ {−1, 1} with
∏d
i=1 εi = −1. The next proposition

says that nondegeneracy also enjoys a similar invariant property.

Proposition 6.4. Let A ∈ Rn1 ⊗ · · · ⊗ Rnd. Then, x = (x1, . . . ,xd) is a nondegenerate singular
vector tuple of A with singular value σ if and only if y = (ε1x1, . . . , εdxd) is a nondegenerate singular

vector tuple of A with singular value (
∏d
i=1 εi)σ for any choices εi ∈ {−1, 1} for all i ∈ {1, . . . , d}.



CONVERGENCE OF HOPM FOR TENSORS 23

Proof. First of all, for any choices εi ∈ {−1, 1} for all i ∈ {1, . . . , d}, y = (ε1x1, . . . , εdxd) is a
singular vector tuple is clear. It is also clear that Tyi(Sni−1) = Txi(Sni−1) for all i ∈ {1, . . . , d}. A
direct calculation will see that
−(Πd

i=1εi)σI Aτ1,2(y) . . . Aτ1,d(y)
Aτ2,1(y) −(Πd

i=1εi)σI . . . Aτ2,d(y)
...

...
. . .

...
Aτd,1(y) Aτd,2(y) . . . −(Πd

i=1εi)σI

 = (Πd
i=1εi)D


−σI Aτ1,2(x) . . . Aτ1,d(x)
Aτ2,1(x) −σI . . . Aτ2,d(x)

...
...

. . .
...

Aτd,1(x) Aτd,2(x) . . . −σI

D,
where D = diag{ε1I, . . . , εdI} is a diagonal matrix. Since each Tyi(Sni−1) is a linear space, we
see that D = diag{ε1I, . . . , εdI} is a nonsingular linear mapping from the tangent space to itself.
It then follows from (37) that the manifold Hessian of G is nonsingular at y if and only if it is
nonsingular at x. Thus, the conclusion follows. �

To see the nondegeneracy of all the nonzero singular vector tuples, from the preceding Proposi-
tion, we only need to consider the singular vector tuples with positive singular values. Using the
algebraic description of singular vector tuples (cf. (4)), we see that the singular vector tuples with
positive singular values of A in the form of (39) are: for all k = 1, . . . , D,

(σ,x1, . . . ,xd) =

((
1∑

i∈Λk
λ

−2
d−2

i

) d−2
2

, P1w, . . . , Pdw

)
, (40)

where Λk ⊆ {1, . . . , D} is a subset of cardinality k ≤ D,

w =

(
1∑

i∈Λk
λ

−2
d−2

i

) 1
2 (
λ

−1
d−2

1 , . . . , λ
−1
d−2

D

)T
,

and the matrices Pi satisfy the following property (P):

(P) Pi ∈ Rni×D is a diagonal matrix with the (j, j)-th diagonal element satisfying{
(Pi)jj ∈ {−1, 1}, if j ∈ Λk,
(Pi)jj = 0, otherwise,

and,
∏d
i=1(Pi)jj = 1 for all j ∈ Λk.

Let Gn :=
{

(ε1, . . . , εn) ∈ {−1, 1}n |
∏n
i=1 εi = 1

}
. Define a multiplication on Gn by

g1g2 = (ε1η1, . . . , εnηn) for all g1 = (ε1, . . . , εn) ∈ Gn and g2 = (η1, . . . , ηn) ∈ Gn.

It is a routine to verify that Gn is an abelian finite group under this multiplication and the order
#(Gn) of Gn is 2n−1. To count the total number of positive singular vector tuples, we shall first
study a group action on Rn1 × · · · × Rnd by Gd defined as

g · x = (ε1x1, . . . , εdxd) for all g = (ε1, . . . , εd) ∈ Gd and x ∈ Rn1 × · · · × Rnd ,

which represents the trivial equivalence of singular vector tuples in a concise mathematical way,
i.e., all singular vector tuples in the same orbit under the group action by Gd are regarded as one
(class). Note that the number of positive singular vector tuples is determined by the matrix tuples
(P1, . . . , Pd) satisfying (P) (cf. (40)), and the group action can be extended to the matrix tuples
directly. Let k ∈ {1, . . . , D} be fixed. Then the number of matrix tuples (P1, . . . , Pd) satisfying (P)
is

#(P)(k) := 2d−1 · · · 2d−1︸ ︷︷ ︸
k

= 2k(d−1).
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It is also easy to see that (ε1P1, . . . , εdPd) satisfies (P) as long as (P1, . . . , Pd) does for any (ε1, . . . , εd) ∈
Gd. Therefore, the number of positive singular vector tuples for this fixed k is (cf. [38])

#(P)(k)

#(Gd)
=

2k(d−1)

2d−1
= 2(k−1)(d−1).

Thus, the total number of positive singular vector tuples 3 is(
D

1

)
+ 2d−1

(
D

2

)
+ · · ·+ 2(D−1)(d−1)

(
D

D

)
=

(1 + 2d−1)D − 1

2d−1
.

Note that the above formula depends extremely on the fact that d > 2, since the number of nonzero
singular vector tuples for matrix cases is D, for generic matrices.

With the picture of the group action and the multilinear orthogonal invariance of singular vector
tuples (cf. Proposition 6.3), we can simplify the analysis for studying the nondegeneracy of these
vast number of nonzero singular vector tuples. Actually, we can apply a multilinear orthogonal
transformation as Proposition 6.3 by diagonal orthogonal matrices Qi’s, where Qi is a diagonal
matrix with the (i, i)-th diagonal element the same as that of Pi if i ∈ Λk and 1 otherwise. Since
Pi’s satisfy (P), we have that A = (Q1, . . . , Qd)·A, and more importantly QiPi is nonnegative for all
i ∈ {1, . . . , d}, such that the resulting singular vector tuples are in the form (40) with nonnegative
Pi’s. Thus, we only need to study the nondegeneracy of those singular vector tuples in the form
(40) with nonnegative Pi’s. For easy reference, these singular vector tuples are dubbed as essential
singular vector tuples. It is easy to see that the number of nonzero singular vector tuples with
nonnegative Pi’s is (

D

1

)
+

(
D

2

)
· · ·+

(
D

D

)
= 2D − 1.

In the following, we show that all these 2D− 1 singular vector tuples are nondegenerate. Firstly,
direct computation shows that the Jacobian matrix of the polynomial mapping S(x) induced by
the tensor A in the form of (39) at a singular vector tuple x with singular value σ has the form

∇xS(x) = −σ diag{I, I, . . . , I} − σ


x1

x2
...

xd

 [xT
1 xT

2 . . . xT
d

]
+


0 Aτ1,2(x) . . . Aτ1,r(x)

Aτ2,1(x) 0 . . . Aτ2,r(x)
...

...
. . .

...
Aτr,1(x) Aτr,2(x) . . . 0



=− σ diag{I, I, . . . , I} − σ


x1

x2
...

xd

 [xT
1 xT

2 . . . xT
d

]
+


0 σP1P

T
2 . . . σP1P

T
d

σP2P
T
1 0 . . . σP2P

T
d

...
...

. . .
...

σPdP
T
1 σPdP

T
2 . . . 0

 , (41)

where the last equality follows from (39), (40) and Property (P). We show Aτ1,2(x) = σP1P
T
2 for

an illustration. Suppose without loss of generality that Λk = {1, . . . , k}. With
∏d
j=1(Pj)ii = 1 for

all i ∈ {1, . . . , k}, a direct calculation will give

Aτ1,2(x) =

k∑
i=1

λie
1
i ⊗ e2

i

d∏
j=3

〈eji , Pjw〉 = σ

k∑
i=1

e1
i ⊗ e2

i

d∏
j=3

(Pj)ii = σ

k∑
i=1

e1
i ⊗ e2

i (P1)ii(P2)ii,

which is the same as σP1P
T
2 .

3 While finalizing a first version of this work, Professor Bernd Sturmfels kindly pointed out to the authors that the
total number of nonzero real singular vector tuples as well as the characterization of the set of nonzero singular vector
tuples for an orthogonally decomposable tensor, has also been recently derived in [53] using algebraic geometry tools.
It is worth noting that our derivation is more elementary. Moreover, our main concern here is the nondegeneracy,
which is not considered in [53].
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Without loss of generality (adopting a simultaneous row and column permutation), we can
assume that P1 = diag{I, 0} for the identity matrix I ∈ Rk×k, i.e., Λk = {1, . . . , k}. In this case, it
is easy to see that

P1P
T
i = [I 0] and PiP

T
j =

[
I 0
0 0

]
for all i, j > 1,

and in which the identity matrices are of the same size k × k and the zero block matrices are of
appropriate sizes. By Schur’s complement theory [32], it is easy to see that the nonsingularity of

∇xS(x) in (41) is equivalent to the nonsingularity of the matrix A ∈ R(
∑d
i=1 ni+1)×(

∑d
i=1 ni+1) where

A :=


−I P1P

T
2 . . . P1P

T
d x1

P2P
T
1 −I . . . P2P

T
d x2

...
...

. . .
...

...
PdP

T
1 PdP

T
2 . . . −I xd

xT
1 xT

2 . . . xT
d 1

 .

For convenience, it is of advantage to view A as an (d+ 1)× (d+ 1) block matrix. It is easy to see
that for i ∈ {1, . . . , d}, in the i-th block row

R =
[
PiP

T
1 PiP

T
2 · · · −I · · · PiP

T
d xi

]
∈ Rni×(

∑d
i=1 ni+1),

the (k + 1)-th row to the ni-th row are zeros except the i-th block is the (ni − k)× (ni − k) minus
identity matrix. Pictorially, we have that

R =

[[
I
0

] [
I 0
0 0

]
· · ·

[
−I 0
0 −I

]
· · ·

[
I 0
0 0

] [
w′

0

]]
,

where w′ is the nonzero sub-vector of P1w. We have a similar conclusion on the i-th block column
for i ∈ {1, . . . , d}. Therefore, we can apply a simultaneous permutation on both the rows and the
columns of A to obtain a matrix of the form

−I
−I I . . . I w′

I −I . . . I w′

...
...

. . .
...

...
I I . . . −I w′

(w′)T (w′)T . . . (w′)T 1


.

Thus, we can assume without loss of generality that n1 = · · · = nd and the matrices P1 = · · · =
Pd = I are the same n1 × n1 identity matrix at the very beginning. In the following, we will show
that the matrix A is nonsingular in this case.

Since the (1, 1)-th block of A is −I, we can apply first a row and then a column elementary
transformations to A to get the following new matrix

−I 0 0 . . . 0 0
0 0 2I . . . 2I 2w
0 2I 0 . . . 2I 2w
...

...
...

. . .
...

...
0 2I 2I . . . 0 2w
0 2wT 2wT . . . 2wT 2


,
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where we used the fact that wTw = 1. It is then sufficient to show the nonsingularity of the next
matrix 

0 I . . . I w
I 0 . . . I w
...

...
. . .

...
...

I I . . . 0 w
wT wT . . . wT 1

 .
Permuting the first column with the second column and using the (1, 1)-th block as the pivot and
applying the first column to eliminate the rest blocks in the first row, we get that the nonsingularity
is equivalent to that of the following matrix C

C :=



I I I . . . I w
I −I 0 . . . 0 0
I 0 −I . . . 0 0
...

...
...

. . .
...

...
I 0 0 . . . −I 0

wT 0 0 . . . 0 0


.

The matrix C can be naturally divided into a 2× 2 block matrix. We first show that the (1, 1)-th
block matrix B is nonsingular. Explicitly,

B :=


I I I . . . I
I −I 0 . . . 0
I 0 −I . . . 0
...

...
...

. . .
...

I 0 0 . . . −I

 .
The nonsingularity of B can be easily shown with Laplace’s formula for determinant (cf. [32, Page
28]) by induction starting from the right-down corner block −I and the first block in the last row.
Suppose that B is of block size s× s, then it is also easy to see by induction that

B−1 =
1

s
B.

Finally, the nonsingularity of the matrix C follows from that B−1 = 1
sB, and the fact that wTw = 1

with Schur’s complement theory. In conclusion, we see that the singular vector tuple is nondegen-
erate.

Below, let us summarize these facts for orthogonally decomposable tensors in the following
proposition for easy reference.

Proposition 6.5 (Singular Vector Tuples of Orthogonally Decomposable Tensors). Let d ≥ 3
and Qi = [ai,1, . . . ,ai,ni ] ∈ Rni×ni be orthogonal matrices, i = 1, . . . , d. Let A be an orthogonally

decomposable tensor with the form A =
∑D

i=1 λia1,i⊗· · ·⊗ad,i for some D ≤ min{n1, . . . , nd}, and

λi > 0, i = 1, . . . , D. Then, there are (1+2d−1)D−1
2d−1 singular vector tuples of A with positive singular

values, and each one of them is nondegenerate and of the form: for some k ∈ {1, . . . , D}

(σ,x1, . . . ,xd) =

((
1∑

i∈Λk
λ

−2
d−2

i

) d−2
2

, Q1P1w, . . . , QdPdw

)
,

where Λk ⊆ {1, . . . , D} be a subset of cardinality k ≤ D,

w =

(
1∑

i∈Λk
λ

−2
d−2

i

) 1
2 (
λ

−1
d−2

1 , . . . , λ
−1
d−2

D

)T ∈ RD,
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and Pi ∈ Rni×D is a diagonal matrix with the (j, j)-th diagonal element being 1 or −1 exactly
when j ∈ Λk and zero otherwise such that the product of all the (j, j)-th diagonal elements of Pi’s
with i ∈ {1, . . . , d} being one for all j ∈ Λk. Moreover, every nonzero singular vector tuple is
nondegenerate.

The next result is a direct consequence of Theorem 4.4, Remark 3.5 and Proposition 6.5, which
shows that HOPM converges globally with R-linear convergence rate for orthogonally decomposable
tensors. We emphasize that, in [24], global convergence rate estimates in terms of the tangents of the
angles between the iterations and a given point were carefully analyzed for HOPM (or equivalently
alternating least squares methods). In particular, under a dominance hypothesis (which involves
the information of the generated iterations), a superlinear convergence rate was established in the
case of orthogonally decomposable tensors. We refer to [24] and the general version [23] for details.
Our next result differs from the result in [24] in the sense that we do not assume any regularity
assumptions. Moreover, our approach offers other insights for orthogonally decomposable tensors
(such as nondegeneracy of nonzero singular vector tuples) which is of independent interest.

Corollary 6.6 (Linear convergence of HOPM for orthogonally decomposable Tensors).

Let {x(k)} be generated by Algorithm 3.1 for a given nonzero orthogonally decomposable tensor A
with order d ≥ 3. Then x(k) → x∗ for a nonzero singular vector tuple x∗, and {x(k)} converges to
x∗ globally with R-linear convergence rate.
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