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Abstract. We discuss the existence of large isolated (non-unit) eigenvalues of the Perron–
Frobenius operator for expanding interval maps. Corresponding to these eigenvalues (or
‘resonances’) are distributions which approach the invariant density (or equilibrium distribution)
at a rate slower than that prescribed by the minimal expansion rate. We consider the transitional
behaviour of the eigenfunctions as the eigenvalues cross this ‘minimal expansion rate’ threshold,
and suggest dynamical implications of the existence and form of these eigenfunctions. A systematic
means of constructing maps which possess such isolated eigenvalues is presented.

AMS classification scheme numbers: 37A30 (primary), 37E05, 37D20, 47A10, 47A15 (secondary)

1. Introduction

Dynamical systems often exhibit very complicated temporal behaviour. In such cases it is less
useful, and perhaps misleading, to compute one single solution of the system for a long period
of time; rather, it is more reasonable to approximate the statistics of the underlying dynamics.
This information is encoded in the so-called natural (or physically relevant) invariant measures.
These specify the probability to observe a typical trajectory within a certain region of state
space. Throughout this paper we will be concerned with natural invariant measures that are
absolutely continuous with respect to the Lebesgue measure and their corresponding invariant
densities.

One may consider a density as an ensemble of initial conditions. The action of the
dynamical system on this ensemble is described by the Perron–Frobenius operator P . Invariant
densities are those ensembles fixed under the linear operator P; in other words, they are
eigenfunctions with eigenvalue 1.

It is well known [7] that within a certain functional analytical set-up, the Perron–Frobenius
operator is Markov, the entire spectrum lies inside the unit disc and P is quasi-compact.
Further, it is known that the essential spectrum of the operator lies inside a disc of radius ϑ ,
where ϑ depends on the weakest (‘long-term’ or ‘sustained’) expansion rate of the underlying
system.

The spectrum of P is connected with the exponential rate of mixing or the exponential
rate of decay of correlations of the system. Spectral points inside the disc {|z| � ϑ} ⊂ C

indicate exponential mixing rates consistent with the mixing caused by the expansion in the
system (or the exponential instability of nearby trajectories). However, the presence of spectral

† http://math-www.uni-paderborn.de/∼agdellnitz

0951-7715/00/041171+18$30.00 © 2000 IOP Publishing Ltd and LMS Publishing Ltd 1171



1172 M Dellnitz et al

points outside the disc {|z| � ϑ} may not be simply explained by mixing due to expansion or
exponential instability in the system. The eigenfunctions of such eigenvalues correspond to
ensembles which approach the equilibrium ensemble (or invariant density) at very slow rates—
rates which are too slow to be explained by the expansion alone. Therefore, we conclude
that the existence of isolated eigenvalues outside the disc {|z| � ϑ} heralds the existence of
macroscopic structures within the state space that contribute directly to the slow mixing rate,
via a slow exchange of ‘mass’ that overrides the expected more rapid decay rates via chaotic
expansion and instability.

This discussion indicates that to identify and study certain macroscopic behaviours of
the underlying system it is relevant to determine whether there are any isolated eigenvalues
outside {|z| � ϑ}. Besides recent analytic considerations [3] this approach has also been
used for the numerical identification of almost-invariant sets [5] and the approximation of
so-called conformations of molecules [11]. However, to the authors’ knowledge, there are no
characterizations in the literature for maps possessing isolated eigenvalues that are not related
to the transient behaviour of the system. We expect that isolated eigenvalues exist for many
systems arising in applications and, therefore, it is important to understand their existence and
related phenomena.

In this paper, we will not just explicitly construct maps which have isolated eigenvalues
besides one, but we will also be able to relate the shape of the corresponding eigenfunctions
to the underlying dynamical behaviour. To this end, we will present a map depending on a
real parameter t ; varying t will allow us to move an eigenvalue away from the boundary of the
essential spectrum to become isolated.

A more detailed outline of the paper is as follows. We begin by formally describing the
mathematical objects we will work with and briefly outline pertinent known results. A case
study is presented in section 3 in which we derive detailed information about the existence and
location of an isolated eigenvalue. In section 4 we begin with some connections between the
position of isolated eigenvalues and the behaviour of their eigenfunctions for a class of maps
containing all those in the present study. We then present a general framework characterizing
a class of maps which possess isolated eigenvalues. This general formulation is particularized
to ‘odd’ interval maps to provide a ‘recipe’ for drawing graphs of interval maps with isolated
eigenvalues. We conclude with a result connecting the behaviour of the second eigenfunction
with the location of the second eigenvalue. This leads to a conjecture giving very general
conditions (with a physical interpretation) for the existence of isolated eigenvalues.

2. Theoretical background

We consider expanding piecewise C2 transformations T : [0, 1]
�

✁

✛
. In this section we briefly

summarize well known facts about the corresponding Perron–Frobenius operator P : BV
�

✁

✛
,

where

(Pf )(x) =
∑

y∈T −1x

f (y)

|T ′(y)|
and BV ⊂ L1 is the space of functions of bounded variation on [0, 1]. For details on the
Perron–Frobenius operator and its properties on the space BV , see [4, 8].

It can be shown that P is a Markov operator†, and so in particular, P always has the
eigenvalue one. Denote by σ(P) and rσ (P) the spectrum of P and the spectral radius of P ,
respectively. We will frequently use the following facts; see [7] for example.

† A Markov operator is a linear operator that maps non-negative functions to non-negative functions and preserves
the norm of non-negative functions.
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Theorem 2.1. The Perron–Frobenius operator P is quasi-compact on BV equipped with the
norm ‖f ‖ = max{‖f ‖L1 , var(f )}. In particular, σess(P) (the essential spectrum of P) is
contained inside a disc of radius ress = sup{|λ| : λ ∈ σess(P)} = ϑ , where

ϑ = lim
k→∞

(
sup
x

(1/|(T k)′(x)|)
)1/k

. (2.1)

Spectral points of P outside the disc {z ∈ C : |z| � ϑ} are isolated eigenvalues of P of finite
multiplicity.

In subsequent sections we will restrict ourselves to Markov† maps T to obtain existence
results for isolated eigenvalues outside the region {|z| � ϑ}. (In the following, the term
isolated eigenvalue refers to isolated eigenvalues of modulus strictly less than 1.) Thus,
we collect further results concerning piecewise-linear expanding Markov maps. Let P be a
Markov partition for T with cardinality q. Denote by F the q-dimensional vector space with
basis {χI : I ∈ P}; it is straightforward to show that F is P-invariant. Define BV/F to be the
quotient space where one factors out all test functions in F .

Lemma 2.2.

(a) σ(P) ⊂ σ(P|F ) ∪ σ(P|BV/F );
(b) rσ (P|BV/F ) � ϑ;
(c) {z ∈ σ(P) : |z| > ϑ} = {z ∈ σ(P|F ) : |z| > ϑ}.

The proofs of (a) and (b) may be found in [6] and [1], respectively. See [2] for further details
on these constructions.

Proof of (c). Clearly, {z ∈ σ(P|F ) : |z| > ϑ} ⊂ {z ∈ σ(P) : |z| > ϑ}. Containment in the
other direction follows immediately from (a) and (b). �

The above lemma tells us that one can find all spectral points outside {|z| � ϑ} by finding
eigenvalues of the matrix representing P|F .

Remarks 2.3. Every eigenvalue of P|F is an eigenvalue of P; even eigenvalues inside
{|z| � ϑ}. If an eigenvalue of P|F is outside {|z| � ϑ}, we know that it is isolated; otherwise,
we just know it is an eigenvalue. There may be isolated eigenvalues inside {|z| � ϑ} which
are not eigenvalues of P|F .

3. A case study: the four-legs map

In this section we perform, for motivational purposes, a brief study of a particular family
of maps where we will show that the corresponding Perron–Frobenius operator has isolated
eigenvalues outside the region {|z| � ϑ}.

We consider the following family of one-dimensional maps Tt : [0, 1]
�

✁

✛
:

Ttx =




2x 0 � x < 1
4

t (x − 1
4 )

1
4 � x < 1

2

t (x − 3
4 ) + 1 1

2 � x < 3
4

2(x − 1) + 1 3
4 � x � 1.

(3.1)

Tt is piecewise linear and has four branches; two of these have slope 2 and two have slope t .
The graph of a typical T is shown in figure 1.

† A map T is called Markov if there exists a partition P = {A1, . . . , An} of [0, 1] such that for each i = 1, . . . , n,
T (Ai) = ⋃

j∈Ji Aj , for some index set Ji ⊂ {1, . . . , n}. Such a partition is known as a Markov partition.
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Figure 1. Graph of Tt for t = 4 − 1
8 .

We wish to study the spectral properties of the family Tt for 2 � t � 4; in particular, for t
close to 4. Since the fixed point 0 lies on a branch with slope 2 we know from proposition 2.1
that for all values of t between 2 and 4, the essential spectrum of the Perron–Frobenius operator
acting on BV functions is contained in the circle |z| � 1

2 .

3.1. The case t = 4

The map T4 is Markov with partition P = {[0, 1
4 ], [ 1

4 ,
1
2 ], [ 1

2 ,
3
4 ], [ 3

4 , 1]}. By restricting the
Perron–Frobenius operator to the four-dimensional space consisting of piecewise-constant
functions on P, we obtain the matrix representation (under left multiplication):

P4 =




1
2

1
2 0 0

1
4

1
4

1
4

1
4

1
4

1
4

1
4

1
4

0 0 1
2

1
2


.

This matrix has eigenvalues 1, 1
2 , 0, 0, the invariant density is φ4 ≡ 1 and the eigenfunction

corresponding to 1
2 is,

ψ4(x) =
{

1 0 � x < 1
2

−1 1
2 � x � 1.



On the isolated spectrum of the Perron–Frobenius operator 1175

By lemma 2.2 (c), we know that P4 has no spectral points outside |z| � 1
2 (except for the

eigenvalue 1).

Lemma 3.1. The eigenvalue 1
2 is in the essential spectrum of P4.

Proof. We show that, in fact, any real number 0 � λ � 1
2 is an eigenvalue of P4. Thus, the

eigenvalue 1
2 is not isolated and therefore is in the essential spectrum by definition. Choose

0 � λ � 1
2 . We will construct an eigenfunction in BV for this eigenvalue. We restrict

ourselves to functions of the form

ψ =
∞∑
n=1

αn
(
χ[1/2n+1,1/2n] − χ[1−1/2n,1−1/2n+1]

)
.

Solving the equation P4ψ = λψ on the interval [ 1
4 ,

1
2 ] gives

1/2α2 + 1/4α1 − 1/4α1 = λα1 �⇒ α2 = 2λα1.

Repeating this argument on the intervals [1/2n, 1/2n−1], we have in general that αn =
(2λ)n−1α1. By this construction both varψ and ‖ψ‖1 are clearly finite, so that ψ ∈ BV

is an eigenfunction. �

3.2. The case t < 4

For t < 4, we may construct a Markov partition by choosing t so that Tt ( 1
2 ) (from the third

branch) is mapped onto x = 1
2 after a finite number of iterations with T k

t (
1
2 ) ∈ [0, 1

4 ] for all
1 � k � n. That is, we wish Tt ( 1

2 ) = t ( 1
2 − 3

4 ) + 1 = 1/2n+1 for any n � 1 of our choosing;
solutions for t are tn = 4−1/2n−1, giving Markov partitions of cardinality 2n+2, respectively.
We denote the restriction of Ptn to piecewise-constant functions on the sets

[0, 1/2n+1], [1/2n+1, 1/2n], [1/2n, 1/2n−1], . . . , [ 1
4 ,

1
2 ]

[ 1
2 ,

3
4 ], . . . , [1 − 1/2n, 1 − 1/2n+1], [1 − 1/2n+1, 1]

by Pn. Eigenvalues may be computed numerically for these matrices, and it is observed that
there is a single real eigenvalue that moves from near 1, towards 1

2 along the positive real axis as
n is increased (that is, as tn tends to 4). For example, at n = 6, one obtains the spectrum shown
in figure 2. In fact, elementary, but somewhat tedious, computations using the characteristic
polynomial of Pn yield

Lemma 3.2. The matrix Pn has exactly one real eigenvalue λn in the interval[
1

2
+

1

5n
,

1

2
+

1

n2/3

]

and no other real eigenvalues in [ 1
2 , 1).

We will return to this example later to elucidate the connection between the form of the
second eigenfunction and the position of the second eigenvalue relative to ϑ .
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Figure 2. Spectral values of the matrix P6. The circle {|z| = 1
2 } is shown as dotted. By lemma 2.2

(c), {z ∈ σ(Pt6 ) : |z| > 1
2 } = {1, λt6 }, where λt6 ≈ 0.5917. As n is increased, λtn → 1

2 (and
additional complex eigenvalues appear outside {|z| = 1

2 } in the vicinity of z = 1
2 ).

4. General results

We begin this section with a weak general result that links the positions of eigenvalues with
the structure of the corresponding eigenmeasure. This indicates a way to progress to achieve
our goal of designing maps with isolated eigenvalues. We then construct a class of maps
whose Perron–Frobenius operator possesses eigenfunctions with the necessary properties, thus
forcing the existence of isolated eigenvalues. This class of maps is later particularized to a
special case, allowing one to follow a set of rules for drawing the graph of an interval map with
isolated eigenvalues. Finally, we conclude with a conjecture presenting general conditions for
the existence of isolated eigenvalues.

4.1. Existence of large eigenvalues

For maps which have a simple structure around one of their fixed points, we show via
straightforward arguments that there is a relationship between eigenvalue/eigenmeasure pairs,
provided that the eigenmeasure has a specified ‘constant’ structure around the selected fixed
point.

Lemma 4.1. Let T : [0, 1]
�

✁

✛
be a (Borel measurable) map that is linear and expanding on an

interval I ∗ with |T ′(x)| = s for x ∈ I ∗. Suppose, in addition, that I ∗ contains a fixed point p.
Let S([0, 1]) denote the space of Borel signed measures on [0, 1], and let T ∗ : S([0, 1])

�

✁

✛

denote the natural action of T on S([0, 1]) defined by T ∗ν = ν ◦ T −1. Furthermore,
suppose that there exists an eigenvalue/eigenmeasure pair (λ, ν) with the eigenmeasure ν
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being absolutely continuous on the interval I ∗ with a non-zero constant density. Then

λ = 1

s
+
ν(T −1(I ∗) ∩ I ∗c)

ν(I ∗)
. (4.1)

Proof. Using the eigenmeasure equation λν(I ∗) = T ∗ν(I ∗), one obtains

λν(I ∗) = ν
(
T −1(I ∗)

) = ν(T −1(I ∗) ∩ I ∗) + ν(T −1(I ∗) ∩ I ∗c)

or

λ = ν(T −1(I ∗) ∩ I ∗)
ν(I ∗)

+
ν(T −1(I ∗) ∩ I ∗c)

ν(I ∗)
.

Since T is linear and expanding on I ∗ and p ∈ I ∗ it follows that m(T −1I ∗ ∩ I ∗) = m(I ∗)/s,
where m is the Lebesgue measure. Using the fact that the density of ν is constant on I ∗ we
conclude that

ν(T −1(I ∗) ∩ I ∗)
ν(I ∗)

= 1

s

which leads to the desired result. �

Particularizing to piecewise-C1 expanding maps, and supposing s = infx |T ′(x)|, we see
that (4.1) is equivalent to

λ = ϑ +
ν(T −1(I ∗) ∩ I ∗c)

ν(I ∗)
(4.2)

where ϑ is defined in (2.1).
Now, for example, if it were known that ν was positive in pre-images of a neighbourhood

of p, equation (4.2) immediately tells one that the corresponding eigenvalue λ is strictly larger
than ϑ . Negative and complex eigenvalues may also in principle be produced by finding
appropriate eigenmeasures ν. We now take up this question of finding suitable eigenmeasures.

Numerical studies have suggested that a general template for such maps are those where a
fixed point coincides with a minimum for the derivative, combined with a ‘non-onto’ condition;
this will be discussed further in a later section. For now, our aim is to describe a class of simple
interval maps with non-trivial chaotic behaviour which exhibit a (real) eigenvalue larger than the
magnitude of the inverse of the minimum slope of the map. These maps should be non-trivial
in the sense that they are mixing on the entire interval with respect to some everywhere-positive
density, and the slow rate of decay is not due to a slow escape of mass from some transient
region.

Roughly speaking, we construct mappings such that the eigenfunction of the Perron–
Frobenius operator corresponding to the second largest eigenvalue is positive (say) on one
‘side’ of this distinguished fixed point, and negative on the other side. The existence of such
an eigenfunction will follow from properties of the Perron–Frobenius operator, which in turn
gives us a description of suitable maps. Once the existence of the eigenfunction is established,
it is a simple matter to use the above arguments to show that the corresponding eigenvalue
must be larger than the magnitude of the inverse of the minimal slope of the map.

For clarity, our constructions will be based upon piecewise-linear Markov maps with
properties to be made precise in the following theorem. We introduce the notion of an interval
exchanging map.
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Definition 4.2. Let P be a Markov partition of [0, 1] of cardinality 2q for a piecewise-linear
Markov map T : [0, 1]

�

✁

✛
. Form any two complementary subsets of P, say PA and Pc

A, with
PA ∩ Pc

A = ∅ and PA ∪ Pc
A = P. We define an interval exchanging map S : [0, 1]

�

✁

✛
by

pairing each interval I ∈ PA with a corresponding interval I ′ ∈ Pc
A, and setting S(I ) = I ′

and S(I ′) = I , with S mapping the intervals I and I ′ onto each other in a linear manner.
Further, we insist that

(a) S commutes with the action of T , so that T ◦ S = S ◦ T ; and
(b) |S ′| = 1.

Define F = sp{χI : I ∈ P}, and set P = P|F . Further, define the q-dimensional
subspace A = sp{χI − χI ◦ S : I ∈ P} and set A = P|A.

Lemma 4.3. The subspace A is P-invariant.

Proof. We claim that

(Pf ) ◦ S = P(f ◦ S) for any f ∈ L1

and the result will then follow since P(f − f ◦ S) = Pf − P(f ◦ S) = Pf − (Pf ) ◦ S, and
PχI ∈ F for I ∈ P.

Now, let B ⊂ [0, 1]. Then∫
B

(Pf ) ◦ S dm =
∫

SB

1

|S ′ ◦ S−1|Pf dm =
∫
T −1◦SB

f dm =
∫

S◦T −1B

f dm

=
∫
T −1B

f ◦ S · |S ′| dm =
∫
B

P(f ◦ S) dm.

and the claim follows. �

Remarks 4.4. The graph of T is invariant under the action of S, since S(x, T x) =
(Sx,ST x) = (Sx, T (Sx)). Clearly S2 = Id, and the only possible fixed points of S are
the boundary points of the intervals in P.

Example 4.5. Setting PA = {[0, 1
4 ], [ 1

4 ,
1
2 ]} and Pc

A = {[ 1
2 ,

3
4 ], [ 3

4 , 1]} the map T4 of
section 3.1 commutes with the interval exchange map Sx = 1 − x.

Definition 4.6. We say that a mapT : [0, 1]
�

✁

✛
is of class Y ifT is a piecewise-linear expanding

Markov map with Markov partition P = {I1, . . . , I2q}, such that there is a fixed point p
satisfying |T ′(p)| = minx∈I |T ′(x)| =: s, and the matrix P of definition 4.2 is eventually
positive†.

Theorem 4.7. Let T : [0, 1]
�

✁

✛
be of class Y. In the notation of definition 4.2, if A is a

non-negative eventually positive matrix, and there exists a δ > 0 such that T −1([p, p + δ]) ⊂⋃
I∈PA

I , where either

† That is, there exists k > 0 such that (P k)ij > 0 for all i, j = 1, . . . , 2q. It is known that if T is mixing, then
P = P|F is eventually positive. For non-negative matrices, eventual positivity is equivalent to irreducibility and
aperiodicity (theorem 4.5.8 in [9], for example.)
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(a) p is a left boundary point of some I ∗ ∈ PA, [p, p + δ] ⊂ I ∗, and T ′(p + δ) > 0,
(b) p lies in the interior of some I ∗ ∈ PA and [p − δ/s, p + δ] ⊂ I ∗

then P : BV
�

✁

✛
has a real positive eigenvalue λ with 1/s < λ < 1. The corresponding

eigenfunction is positive on PA and negative on Pc
A.

Remark 4.8. One may replace δ > 0 with δ < 0, and [p, p + δ] with [p − δ, p] throughout,
changing ‘left boundary point’ to ‘right boundary point’ in the statement of theorem 4.7. A
similar formulation may be used to create negative isolated eigenvalues.

Proof of theorem. Using eventual positivity of P , the Perron–Frobenius theorem (see
theorem 9.10 [10], for example), implies that P has a unique maximal positive eigenvalue
(in this case the eigenvalue 1) and a corresponding unique positive left eigenvector p. This
(suitably normalized) eigenvectorp defines the unique invariant densityφ by settingφ(x) ≡ pi
for x ∈ Ii , i = 1, . . . , 2q. By the Perron–Frobenius theorem, all other eigenvalues of P are
strictly less than 1. Any eigenvalues of A must be less than one, since functions in A have
both positive and negative values, and these cannot be eigenfunctions for the eigenvalue 1,
which is everywhere positive. We now show that under the above assumptions, one must have
λ > 1/s.

For notational purposes, set PA = {I ′
1, . . . , I

′
q}. By eventual positivity of A, the Perron–

Frobenius theorem tells us thatAhas a positive eigenvalueλwith corresponding left eigenvector
v with all positive entries. This (again suitably normalized) eigenvector v defines a signed
density ψ on [0, 1] by setting ψ(x) ≡ vj and ψ(Sx) = −vj for x ∈ I ′

j , j = 1, . . . , q. The
signed density ψ satisfies the equation Pψ = λψ (since ψ ∈ A). Note that ψ is positive on
PA and negative on Pc

A; ψ has been normalized so that
∫

[0,1] |ψ | dm = 1. Let ν denote the
signed measure corresponding to the signed density ψ .

In (a), T ′(p + δ) > 0, and therefore T −1([p, p + δ])∩ [p, p + δ] = [p, p + δ/s]. Clearly,
ν(T −1([p, p + δ])∩ [p, p + δ]) = sν([p, p + δ]). In (b), we have that [p− δ/s, p + δ/s] ⊂ I ∗

and therefore again, ν(T −1([p, p + δ]) ∩ [p, p + δ]) = sν([p, p + δ]). We evaluate the
eigenequation ν ◦ T −1 = λν on the set [p, p + δ] to obtain (WLOG we assume that
T −1([p, p + δ]) ∩ [p, p + δ] = [p, p + δ/s])

ν([p, p + δ/s]) + ν(B) = λν([p, p + δ]) (4.3)

where B is a collection of intervals in PA by assumption. We may replace ν([p, p + δ/s])
with ν([p, p + δ])/s since ν has a constant density on [p, p + δ] as [p, p + δ] ⊂ I ∗ ∈ PA to
obtain

ν(B) = (λ− 1/s)ν([p, p + δ]). (4.4)

Since B ⊂ PA and ν is positive on PA, ν(B) > 0, so that we must have λ > 1/s. �

4.2. When A is eventually positive: odd maps

Theorem 4.7 gave conditions on the matrix A and the map T for the existence of eigenvalues
outside the disc {|z| � 1/s}. The purpose of this subsection is to interpret non-negativity and
eventual positivity of A in terms of the map T , and to arrive at a ‘recipe’ for constructing
maps with large isolated eigenvalues. For simplicity, we choose Sx = 1 − x, a reflection
about x = 1

2 ; maps which commute with this interval exchange map are odd maps about the
symmetry point x = 1

2 . We begin by considering an example map and discussing the salient
features of the graph which will be used in a rigorous theorem to follow.
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Figure 3. The branch with fixed point p = 0 having minimal slope.

Example 4.9. Our map will be an odd piecewise-linear expanding Markov map; we discuss
the construction on [0, 1

2 ] and the remaining half is obtained by symmetry.
The first branch shown in figure 3 maps [0, b1] (b1 = 1

4 here) onto [0, 1
2 ] and has a fixed

point at the origin (p = 0). This branch has slope s = 2, and this will be the minimal slope of
T . The boundary points of the Markov partition P of T in [0, 1

2 ] consist only of break points
of T and inverse images of b1 contained in [0, b1], namely the points x = s−l/2, l = 1 . . . , 4
(x = 1

4 ,
1
8 ,

1
16 ,

1
32 ). By the oddness of T , the Markov partition in [ 1

2 , 1] is given by the images
of the partition sets in [0, 1

2 ] under S. Denote the partition sets between b1 and 1
2 as

I1 = [
1
4 ,

5
16

]
I2 = [

5
16 ,

3
8

]
I3 = [

3
8 ,

7
16

]
and I4 = [

7
16 ,

1
2

]
.

In figure 4 we add the branches on each interval Ii that has 1 − s−4/2 = 1 − 1
32 ∈ ∂(T Ii).

There must be at least one branch which has x = 1 − 1
32 as a boundary point of its image;

otherwise there is no reason to include this point as a boundary point in the Markov partition.
To ensure non-negativity of A, a further restriction to all additional branches is that the left
endpoint of T (Ii) is strictly† less than S (the right endpoint of T (Ii)); roughly speaking, on
the graph of T , all branches must be ‘more below y = 1

2 than above y = 1
2 ’. This forces this

second branch in figure 4 to map onto x = 0, and also disallows any branches mapping into
the shaded region of the graph.

† ‘Strictly’ is needed later to show eventual positivity of A.
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Figure 4. Additional branches on the intervals Ii which satisfy 1 − 1
32 ∈ ∂(T Ii ).

In figure 5 we now insert all other branches on intervals Ii for which [0, 1
32 ] ⊂ T (Ii).

Denote the indices of such intervals by K; in this example, K = {1, 3}, since T (I1), T (I3) both
intersect [0, 1

32 ]. It is important that K �= ∅.
Finally, in figure 6 we insert the remaining branches (for which [0, 1

32 ] ∩T (Ii) = ∅). The
indices of these branches will belong to Kc; here Kc = {2, 4}. To ensure eventual positivity
of A, it is sufficient that the leftmost interval of P contained in T (Ij ), j ∈ Kc, intersects,
the union [0, b1] ∪ ⋃

k∈K Ik . This is true for this map since T (I2) = [ 1
32 , 1

16 ] ∪ [ 1
16 ,

1
8 ] ∪

[ 1
8 ,

1
4 ] ∪ I1 ∪ I2 ∪ I3, and T (I4) = I3 ∪ I4 ∪ S(I4), where the bold intervals belong to

[0, b1] ∪ ⋃
k∈K Ik . These properties will be made precise in the next theorem, and the reader

should refer back to this illustrative example.

Definition 4.10. Let T : [0, 1]
�

✁

✛
be a piecewise-linear expanding Markov map satisfying the

oddness condition T (x) = 1 − T (1 − x). The class of maps we now construct will be called
class C.

We describe T on [0, 1
2 ] and construct the remainder of T by symmetry. For x ∈ [0, b1],

b1 <
1
2 , T (x) = x/2b1; we assume that s := 1/2b1 = minx∈I |T ′(x)|. In the region [b1,

1
2 ],

T consists of finitely many linear branches with intervals of monotonicity I1, . . . , Iq . The
boundary points of the Markov partition P of T consist only of the break points of T and
inverse images of 1

2 contained in [0, b1]; that is ∂P ∩ [0, 1
2 ] = {0} ∪ ⋃q

i=1 ∂Ii ∪ ⋃M
i=1 s

−i/2
and ∂P ∩ [ 1

2 , 1] is constructed by reflection about x = 1
2 (M � 1). Let K be defined by
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Figure 5. Additional branches on the intervals Ii which satisfy [0, 1
32 ] ⊂ T (Ii ).

[0, s−M/2] ⊂ T (Ik) �⇒ k ∈ K, and assume that K �= ∅. Let ∂I−, ∂I + denote the lower and
upper boundaries of an interval I , respectively. Further assume that ∂(T Ij )− < 1 − ∂(T Ij )

+

for all j = 1 . . . , q. Finally, for every j ∈ Kc := {1, . . . , q} \ K, suppose that the leftmost
interval contained in T (Ij ) is a subset of [0, b1] ∪ ⋃

k∈K Ik .

Theorem 4.11. Let T : [0, 1]
�

✁

✛
be of class C. Then T has a unique positive invariant density

φ, and T is exact with respect to φ. The essential spectrum of P|BV is contained in the disc
{|z| � 1/s}, while P|BV has a real positive eigenvalue 1/s < λ < 1. The corresponding
eigenfunction is positive on [0, 1

2 ] and negative on [ 1
2 , 1].

Remarks 4.12.

(a) Note that the four-legs map and the map of example 4.9 are of class C.
(b) The fact that M � 1 automatically implies that T (0, 1

2 )∩ ( 1
2 , 1) �= ∅. The theorem would

also hold if we were to allowM � 0, while additionally insisting that T (0, 1
2 )∩( 1

2 , 1) �= ∅.
We require the two intervals [0, 1

2 ] and [ 1
2 , 1] to communicate so that it is possible for P

to be mixing.
(c) The fact that K �= ∅ means that there is at least one other branch (besides the branch

through 0) which maps onto the Markov partition set containing 0. The purpose of this is
to allow returns near the fixed point, so that (a) T will be mixing and (b) the matrix A has
a chance of eventually being positive.
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Figure 6. Additional branches on intervals Ii which have the leftmost interval in T (Ii ) contained
in [0, b1] ∪ ⋃

k∈K Ik .

(d) The property that ∂(T Ij )− < 1 − ∂(T Ij )
+ for all j = 1 . . . , q is sufficient to ensure that

the ‘antisymmetric’ matrix A is non-negative. It also automatically precludes any images
too close to 1; that is, it forces T ([0, 1

2 ]) ⊂ [0, 1 − s−M/2], and produces a ‘dip’ in P1
(cf conjecture 4.16).

(e) The property concerning those intervals Ij with j ∈ Kc forces the intervals which do not
map back to near 0 to at least map onto intervals which do map back near to 0 (that is, onto
those intervals Ik with k ∈ K). In fact, this property is even stronger, requiring that the
leftmost interval in the image maps onto a branch that maps to near 0. This extra property
is sufficient to ensure eventual positivity of the ‘antisymmetric’ matrix A. Without the
‘leftmost’ property, we still have eventual positivity of the full matrix P .

Proof of theorem 4.11. By linearity of T , we may restrict P to the basis of piecewise-
constant functions F as in theorem 4.7. Set P = P|F and A = P|A, where S(x) = 1 − x.
Consider first the matrix P ; we show that it is eventually positive. The cyclic structure of
P emanating from the first state means that beginning at the first state (corresponding to the
interval [0, s−M/2]) it is possible to cyclically move through all states in [0, 1

2 ]; similarly,
starting from the final state (corresponding to [1 − s−M/2, 1]), one can move through [ 1

2 , 1]
from right to left. Since K �= ∅, we are re-injected into this first (and last) state by at least
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one of the intervals in [b1,
1
2 ]. Thus, starting anywhere in [0, b1] ∪ ⋃

k∈K Ik , we can reach
anywhere else in [0, b1] ∪ ⋃

k∈K Ik , and starting in [1 − b1, 1] ∪ ⋃
k∈K(1 − Ik) we can reach

anywhere else in [1−b1, 1] ∪ ⋃
k∈K(1−Ik). By the property concerning Ij , j ∈ Kc, intervals

in [b1,
1
2 ] which do not map into [0, s−M/2] do, however, map into [0, b1] ∪ ⋃

k∈K Ik , and
thus we can move back and forth from this collection of intervals to those with indices Kc.
Thus we can move from anywhere in [0, 1

2 ] to anywhere else in [0, 1
2 ]. By remark 4.12 (b), the

intervals [0, 1
2 ] and [ 1

2 , 1] communicate and therefore we can move from anywhere in [0, 1]
to anywhere else in [0, 1] and so given any two states i, j there is an N such that (PN)ij > 0.
This does not, however, show that P is eventually positive. For this, all entries (i, j) of Pn

must be positive for every n � N , some finite N . However, this is also true, because we can
‘wait’ in the state corresponding to [0, s−M/2] (or [1− s−M/2, 1]) as long as we like. Suppose
we can move from a state i to a state j in n steps (n is bigger than the dimension of P ); then
we can go from i to j in any number of steps greater than n by waiting in the first (or last)
state as long as is necessary. Now P is eventually positive, and by a standard result T is exact
with respect to φ.

Consider now the (M + q) × (M + q) matrix A. Firstly, by the property that ∂(T Ij )− <

1 − ∂(T Ij )
+ for all j = 1 . . . , q, we see that A must be non-negative. By a similar argument

to that used for P above, we cyclically move from the (first) state corresponding to the
basis function χ[0,s−M/2] − χ[1−s−M/2,1] through all states to the (final) state corresponding
to χIq − χ1−Iq . We are again re-injected into the first state by the fact that K �= ∅ and that
∂(T Ij )

− < 1 − ∂(T Ij )
+ for all j . Thus there is no problem with A being eventually positive

on the states corresponding to χ[0,b1] ∪ ⋃
k∈K Ik − χ1−([0,b1] ∪ ⋃

k∈K Ik). For the remaining states
(corresponding to basis functions χIj − χ1−Ij with j ∈ Kc), we argue as follows. The fact
that ∂(T Ij )− < 1 − ∂(T Ij )

+ for all j = 1 . . . , q ensures that each row of A has at least one
positive entry, namely Ajl , where Il is the leftmost interval in T (Ij ). By the property that
for every j ∈ Kc := {1, . . . , q} \ K, the leftmost interval contained in T (Ij ) is a subset of
[0, b1] ∪ ⋃

k∈K Ik , we know that at the next iteration, this leftmost interval will be sent to a
state with index not in Kc, and therefore we have communication between states with indices
in Kc and the remaining states as before. Thus, A is also eventually positive (since the first
state may remain fixed forever so we can verify aperiodicity as forP ), and there exists a strictly
positive eigenvector v, with eigenvalue λ. This defines an eigenmeasure ν as in the proof of
theorem 4.7, and since our map T satisfies the conditions of this theorem, we again conclude
that 1/s < λ < 1. This completes the proof of theorem 4.11. �

Remark 4.13. Theorem 4.11 describes the situation where the fixed point p = 0 and the
low-slope branch of T containing p has positive slope. We could also produce versions where
p = 1

2 (say), and the low-slope branch containing P could have either a positive or a negative
slope. We would require the negative-slope case if we wished to find a negative isolated
eigenvalue.

4.3. Possible discontinuities in the second eigenfunction

In this subsection we study possible ‘spiking’ behaviour in the second eigenfunctions that can
occur when isolated eigenvalues approach 1/s, where s is the slope of the branch of a map
containing the fixed point p.
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Figure 7. (a) Graph of the invariant density φt6 (Pt6φt6 = φt6 ). (b) Graph of the eigenfunction ψt6

corresponding to the second largest eigenvalue λt6 ≈ 0.5917.

Corollary 4.14. Under the hypotheses of theorem 4.7, one has (letting ψ denote the
eigenfunction corresponding to the eigenvalue λ)

λ− 1/s = (1/ψ |[p,p+δ])
∑
I∈PA

[p,p+δ]⊂T (I)

ψ |I
|T ′|I | . (4.5)

Proof. This follows immediately by evaluating the eigenvalue equation Pψ = λψ on the
interval [p, p + δ]. �

Considering corollary 4.14, we know from theorem 4.7 thatψ is positive on PA; thus both
sides of (4.5) are positive. Now consider a family of mappings {Tn} satisfying the conditions
of theorem 4.7 which share the fixed point p (and the local slope s about p) and for which
λn → 1/s. If one assumes that ψn|I is uniformly bounded below (uniformly in n), for all
I ∈ Pn,A with [p, p + δ] ⊂ Tn(I ), then equation (4.5) says that ψn|[p,p+δ] must become
unbounded as n → ∞. If ψn|I is not uniformly bounded below, then ψn|[p,p+δ] must still
become unbounded from normalization considerations of ψ . Either way, a ‘spike’ occurs in
the eigenfunctions ψn in a neighbourhood of the fixed point p, as λn approaches 1/s. We will
now briefly show that indeed this spike is observed in the second eigenfunction of the four-legs
map in section 3 (see figure 7).

Lemma 4.15. Let Tt denote the map of section 3, and let νn be a signed measure satisfying
νn ◦ T −1

tn
= λnνn, with νn([0, 1]) = 0 and νn([0, 1

2 ]) = 1
2 , and let ψtn denote the density of νn.

Then

n2/3

tn
�

supx∈[0,1/2] ψtn(x)

infx∈[0,1/2] ψtn(x)
� 5n

tn
(4.6)
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with the supremum occurring in the interval [0, 1/2n+1] and the infimum occurring in [ 1
4 ,

1
2 ]

(clearly ψtn is constant on these intervals).

The dips in the invariant density at x = 0, 1 are related to the fact that for t < 4, small
neighbourhoods of the fixed points have fewer pre-images than for t = 4 (and therefore
less ‘mass’ is injected into these regions). The spikes in the second eigenfunction may also
informally be thought of as a consequence of the missing pre-images; the lack of pre-image
deprives ‘cancellation’ of the spike when the eigenfunction is acted on by the Perron–Frobenius
operator (see also the discussion in section 4.3). These considerations, backed by our numerical
experience, lead us naturally to the following conjecture.

4.4. A conjecture

To conclude this section, we present a conjecture to suggest very general conditions under
which piecewise-linear expanding interval maps may possess eigenvalues outside the disc
{|z| � ϑ}. The hypotheses of the conjecture were formulated after numerical studies of a
large number of interval maps. We note that the hypotheses of theorem 4.7 and those of the
following conjecture overlap, but one set of hypotheses is not a subset of the other.

Conjecture 4.16. Let T : [0, 1]
�

✁

✛
be a piecewise-linear expanding map with a unique

everywhere-positive invariant density φ. Assume that T has a fixed point p on the interior
of the branch of minimal slope; that is, |T ′(p)| = minx∈[0,1] |T ′(x)| and T is C2 in an open
neighbourhood† about p. Further, suppose that the function g := P1 satisfies

(a) g(x) = g(p) for p < x � p + ε+
1 and g(x) > g(p) for p + ε+

1 < x for some ε+
1 � 0,

(b) g(x) = g(p) for p − ε−
1 < x < p and g(x) > g(p) for x < p − ε−

1 for some ε−
1 � 0.

where at least one of ε+
1 and ε−

1 is strictly greater than 0. Then for all sufficiently small
ε±

1 , P has an eigenfunction of bounded variation with eigenvalue outside the disc of radius
ϑ = 1/ infx∈I |T ′(x)|.
The reasoning behind this conjecture is as follows. The existence of large isolated eigenvalues
is equivalent to the existence of initial densities φ′ for which Pkφ′ → φ very slowly (at a rate
slower than O(ϑk)). A possible mechanism for the existence of such densities is the existence
of a fixed point p on a branch of low slope, coupled with a ‘less than average’ injection of
mass into a neighbourhood of the fixed point.

It is often observed numerically that maps which possess large isolated eigenvalues have
corresponding eigenfunctions ψ ′ which have ‘spikes’ in a neighbourhood of the fixed point
p; these spikes often change sign when crossing over the fixed point. If (λ′, ψ ′) is a genuine
eigenvalue/eigenfunction pair for P , we may set φ′ = φ + αψ ′, where α is sufficiently small
to ensure that φ′ � 0, and have that ‖Pkφ′ − φ‖BV = λ′ k‖ψ ′‖BV .

A large negative ‘spike’ in ψ ′ translates into a ‘dip’ in φ + αψ ′ near the fixed point.
Considering only the slope at the fixed point, this ‘dip’ will be ‘washed away’ at a rate given
by the slope. However, our ‘dip’ conditions (a) and (b) slow down this washing away just a
little, pushing the eigenvalue outside the disc {|z| � ϑ}.

5. Discussion and conclusions

The current work is preliminary. We do not pretend to give a systematic treatment of the theory
concerning the isolated spectra of Perron–Frobenius operators arising from expanding interval

† If p = 0 or 1, then T should be C2 when T : [0, 1]
�

✁

✛
is regarded as a map of the circle T : S1 �

✁

✛
by identifying

the boundary points 0 and 1.
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maps. Rather, we have scratched the surface of this interesting, important and seemingly
largely unstudied subject.

Remark 5.1. At this point, we would like to describe an alternative method of producing an
isolated eigenvalue as pointed out by one of the referees. Take a mixing piecewise-linear
Markov map T with k linear branches whose Perron–Frobenius operator P has an eigenvalue
0 < λ < 1; suppose that |λ| < ϑ . For each i = 1, . . . , k, replace the ith branch of T
(denoted Ti) by l smaller branches T̃i1 , . . . , T̃il with slope l|T ′

i | such that the image of each T̃ij ,
j = 1, . . . , l, is equal to the image of Ti . Denoting by P̃ and ϑ̃ the Perron–Frobenius operator
and essential spectral radius bound for T̃ , it is clear that ϑ̃ = ϑ/l. It is also clear that the
eigenvalue λ is still an eigenvalue for P̃ and so by making l sufficiently large, we may shrink
the essential spectrum so that λ eventually lies outside it.

Future work will include enlarging the class of maps for which we can rigorously show
the existence of isolated eigenvalues. It is also desirable for the conditions on the maps to
show more transparently the mechanism by which the isolated eigenvalues appear, and the
connections with the slow mixing rates and corresponding macroscopic structures. (Perhaps
conjecture 4.16 or some variant can be proven.)

An understanding in greater generality of the transition of eigenvalues across the circle
{|z| = ϑ} is also of interest. For example, understanding how the map T must vary, and how
the eigenfunctions ψ must behave during the transition.

Also of importance is the connection between numerical techniques and mathematical
rigour. Finite-dimensional (matrix) approximations of the Perron–Frobenius operator and the
corresponding spectra may be calculated numerically. Such approximations are often produced
for very general (higher-dimensional, chaotic) maps, and it is of great interest to understand
what of the dynamics can be extracted from the numerically calculated spectral points and
their eigenvectors. For example, whether outlying eigenvalues give information about large
slowly mixing structures embedded in the overall (on average more rapidly mixing) chaotic
dynamics.
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