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Abstract
We study the stability of statistical properties of Anosov maps on tori by exam-
ining the stability of the spectrum of an analytically twisted Perron–Frobenius
operator on the anisotropic Banach spaces of Gouëzel and Liverani (2006
Ergod. Theor. Dyn. Syst. 26 189–217). By extending our previous work in Crim-
mins and Froyland (2019 Ann. Henri Poincaré 20 3113–3161), we obtain the
stability of various statistical properties (the variance of a CLT and the rate func-
tion of an LDP) of Anosov maps to general perturbations, including new classes
of numerical approximations. In particular, we obtain new results on the stabil-
ity of the rate function under deterministic perturbations. As a key application,
we focus on perturbations arising from numerical schemes and develop two new
Fourier-analytic methods for efficiently computing approximations of the afore-
mentioned statistical properties. This includes the first example of a rigorous
scheme for approximating the peripheral spectral data of the Perron–Frobenius
operator of an Anosov map without mollification. We consequently obtain the
first rigorous numerical methods for estimating the variance and rate function
for Anosov maps.

Keywords: anosov, statistical stability, transfer operator, spectral stability, rate
function, diffusion coefficient, variance
Mathematics Subject Classification numbers: 37M25, 37D20.

(Some figures may appear in colour only in the online journal)

1. Introduction

We consider the stability of various statistical objects associated with Anosov maps T : Td �
on tori, with a view towards building rigorous numerical estimates of these objects. In par-
ticular, we consider the Sinai–Ruelle–Bowen (SRB) measure μ on Td , the limiting variance

1361-6544/20/116244+53$33.00 © 2020 IOP Publishing Ltd & London Mathematical Society Printed in the UK 6244

https://doi.org/10.1088/1361-6544/ab987e
https://orcid.org/0000-0002-2633-7117
https://orcid.org/0000-0002-2995-0582
mailto:h.crimmins@unsw.edu.au
mailto:g.froyland@unsw.edu.au
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6544/ab987e&domain=pdf&date_stamp=2020-10-8


Nonlinearity 33 (2020) 6244 H Crimmins and G Froyland

of scaled Birkhoff sums of a smooth observation function g : Td � R guaranteed by the cen-
tral limit theorem (CLT), and the rate function associated with large deviations of Birkhoff
sums of g from Eμ(g) as guaranteed by a large deviation principle (LDP). We use the naive
Nagaev–Guivarc’h method (see e.g. [13]) to relate the spectral data of an analytically twisted
Perron–Frobenius operator to statistical properties of the system. The stability these properties
then follows from the stability of the spectrum of the twisted Perron–Frobenius operator [8].

The stability of the SRB measure to deterministic and stochastic perturbations has been well
studied. Early results of Kifer [24] and Young [34] established the stability of SRB measures
under small stochastic perturbations. Differentiability of the SRB measure under sufficiently
smooth deterministic perturbations was proven for Anosov maps [21], followed by a more
detailed analysis in [30, 31]. Spectral approaches for higher order differentiability of the SRB
measure are developed in [7, 14].

Rigorous numerical schemes for approximating the SRB measure of an Anosov map were
considered in [11], where Ulam’s method is applied on Markov partitions, and in [9] via a
two-step process, whereby one first convolves with a locally supported stochastic kernel, and
then applies Ulam’s method. The paper [4] improves on the approach of [9] by linking the sup-
port radius of the kernel to the size of the Ulam partition elements, resulting in a single limit
process and estimates of the rate of convergence; unfortunately, the support radius scaling is
very large compared to the partition element diameter. Each of the above approaches has sig-
nificant shortcomings: while [11] avoids convolution, computing Markov partitions is usually
impractical; in practice, one usually does not implement the convolution in the methods of [4,
9] because of a large computational cost.

In the present paper, we develop two new rigorous approaches that are computationally prac-
tical. Each is based on Fourier approximation, which is a natural basis for the periodic domain
Td , and can exploit the smoothness in the map T. Furthermore, the spatial Fourier basis need
not be adapted to the unstable and stable directions of T; we use a standard Cartesian coor-
dinate system. Our first scheme builds finite-rank approximations of the Perron–Frobenius
operator in a two-step process involving convolution, but the convolution is cheaply imple-
mentable via Fourier methods. Our second scheme builds a single sequence of finite-rank
approximations of the Perron–Frobenius operator that avoids convolution altogether. The SRB
measure approximation is found as the leading eigenvector of these finite-rank estimates of
the Perron–Frobenius operator (in frequency space), and represents a real-analytic function
close to the true SRB measure in the anisotropic norms of [14]. In both cases, we prove that
the approximate SRB measure produced by the scheme converges to the actual measure as
the accuracy of the scheme improves. We implement both approaches and find convergent
numerical approximations of the SRB measure for an example Anosov map.

In the Anosov setting the stability of the variance has been established for specific pertur-
bations, usually via a combination of the Green-Kubo formula and spectral stability of the
(untwisted) transfer operator. Our approach is essentially the same, although by considering
the stability of the twisted transfer operator we additionally obtain the stability of the rate func-
tion. Stability of the variance is noted in [4] for stochastic perturbations with smooth kernels,
and in [14] for smooth deterministic perturbations and a broad class of random perturbations.
The variance has also been shown to be stable to deterministic perturbations of Lorenz flows
[3].

Rigorous numerical schemes for estimating the variance have so far been considered for Ck

expanding circle maps [33], piecewise analytic expanding interval maps [18], Lasota–Yorke
maps [2, 8], the intermittent Liverani–Saussol–Vaienti interval map [2], and piecewise expand-
ing multidimensional maps [8]. All of these methods produce computable bounds for the
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approximation error, except [8] which demonstrates convergence of the numerical approxi-
mation with increasing numerical resolution. We will show that our new Fourier-based con-
structions and the anisotropic spaces of [14] fit into the general stability framework developed
in [8], which yields stability of the CLT variance for a broad class of deterministic, stochastic,
and numerical perturbations. We thus obtain the first rigorous numerical scheme for estimating
the variance for Anosov systems, and implement this scheme to produce numerical estimates
for an example Anosov map. Our implementation constructs a finite-rank approximation of the
Perron–Frobenius operator (in frequency space) and exploits the smoothness of spectral data
to only require the solution of a single linear equation to estimate the variance.

In the context of Anosov flows, the stability of the rate function with respect to smooth
deterministic perturbations of the velocity field is noted in [7]. We extend the general stabil-
ity framework [8] for statistical properties of multidimensional piecewise expanding maps to
the setting of Anosov diffeomorphisms, proving stability of the rate function with respect to
standard classes of deterministic, stochastic, and numerical perturbations. This yields a proof
of uniform convergence of the rate function with respect to smooth deterministic perturba-
tions of an Anosov map. For each of the two new Fourier-based schemes, we prove uniform
convergence of the rate function estimates arising from finite-rank approximations of twisted
Perron–Frobenius operators. We implement these schemes to provide numerical estimates of
a rate function for an example observation and Anosov map.

An overview of the paper is as follows. Section 2 briefly reviews results from [8] concern-
ing the spectral stability of twisted quasi-compact operators in the sense of [23]. In section 3
we state the abstract requirements for the Nagaev–Guivarc’h method to guarantee a central
limit theorem and large deviation principle, and state an abstract hypothesis that yields stabil-
ity of the variance and rate function using a modification of the abstract stability result from
[8]. In section 4 we briefly introduce the functional analytic setting of Gouëzel and Liverani
[14] and verify the abstract hypothesis for Anosov maps in this setting. We then obtain sta-
bility of the rate function for Anosov diffeomorphisms under deterministic perturbations; see
theorem 4.4. Section 5 introduces our first Fourier-analytic scheme, which has wide applica-
bility due to additional mollification, allowing the scheme to ‘smooth away’ the complications
of hyperbolic dynamics. Proposition 5.3 verifies that there is a sequence of Fourier projections
of mollified transfer operators that satisfy the abstract stability hypotheses and theorem 5.6
states the corresponding stability results. In section 6 we introduce our second scheme, which
removes the mollification step for Anosov maps with approximately constant stable and unsta-
ble directions; we obtain a pure (weighted) Fourier projection method based on the Fejér kernel.
We may subject the transfer operator to stochastic kernels with relaxed regularity requirements
(compared to section 5) and full (but sufficiently decaying) support and still obtain the abstract
stability hypotheses; see proposition 6.1. Theorem 6.3 summarises the stability results that are
obtained, and corollary 6.4 addresses the perturbation arising from approximation with Fejér
kernels. We conclude in section 7 by implementing the above schemes on a nonlinear perturba-
tion of Arnold’s cat map. We compare our Fourier-based estimates of the SRB measure and the
variance with estimates from a (non-rigorous) pure Ulam method, and compute Fourier-based
estimates of the rate function. To the authors’ knowledge, this constitutes the first rigorous (in
the sense of convergence) computation of the variance and rate function of an Anosov map.

2. A review of the spectral stability of twisted quasi-compact operators

In this section we review the theory of spectral stability of quasi-compact operators from [23]
and the corresponding results for twisted operators from [8]. Let (E, �•�) be a (complex) Banach
space, denote by L(E) the bounded linear operators on E and by �•� the operator norm on L(E),
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and let A � L(E). Denote the spectrum of A by σ(A). The essential spectrum of A is

σess(A) = {ω � σ(A) : ω is not an eigenvalue of A of finite algebraic multiplicity}.

Denote the spectral radius and essential spectral radius of A by ρ(A) and ρess(A), respectively.
We say that A is quasi-compact if ρess(A) < ρ(A). If A is quasi-compact and σ(A) � {ω : |ω| =
ρ(A)} consists of a single simple eigenvalue λ then we call A simple and λ the leading
eigenvalue of A. In this case A has decomposition [19, III.6.4-5]

A = λΠ + N, (1)

where Π is the rank-one eigenprojection corresponding to λ, N � L(E) is such that ρ(N) <
ρ(A), and NΠ = ΠN = 0. We call (1) the quasi-compact decomposition of A.

Let |•| be a norm on E such that the closed, unit ball in (E, �•�) is relatively compact in the
topology of |•|. After possibly scaling |•|, we may assume that |•| � �•�. Define the norm |||•|||
on L(E) by

|||A||| = sup
� f�=1

|A f | .

It is classical that if A is a simple quasi-compact operator and �A� � A� is sufficiently small for
some A� � L(E) then A� is also a simple quasi-compact operator with leading eigenvalue close
to λ (see e.g. [19, IV.3.5]). However, this condition of closeness in �•� is seldom satisfied by
applications in dynamical systems. In [23], Keller and Liverani showed that if A� is close to A
in the weaker topology of |||•|||, both operators obey a Lasota–Yorke inequality, and growth
restrictions are placed on the (various) operator norms of iterates of A and A�, then one can
recover appropriately modified versions of the spectral stability results from operator norm
based perturbation theory. We now detail the requirements for these results, referring to [23]
for exact statements.

Definition 2.1. A family of operators {Aε}ε�0 � L(E) satisfies the Keller–Liverani (KL)
condition if each of the following is satisfied:

(KL1) There exists a monotone upper-semicontinuous function τ : [0,�) � [0,�) such
that τ (ε) > 0 whenever ε > 0, |||Aε � A0||| � τ (ε), and limε�0τ (ε) = 0.

(KL2) There exists C1, K1 > 0 such that
��An

ε

�� � C1Kn
1 for every ε � 0 and n � N.

(KL3) There exists C2, C3, K2 > 0 and α � (0, 1) such that

�An
ε f� � C2α

n� f�+ C3Kn
2 | f | (2)

for every ε � 0, f � E and n � N.

Remark 2.2. If rates of convergence are not required, then it suffices to prove that
|||Aε � A0||| � 0 instead of constructing the function τ in (KL1). After possibly passing to
a sub-family {Aε}ε�[0,ε�) for some ε� > 0, the two conditions are equivalent. We will use this
fact frequently without further comment.

Instead of considering a single simple quasi-compact operator, one sometimes considers an
analytic operator-valued map1 A(•) : D � L(E), where D � C is an open neighbourhood of 0

1 Recall that an operator-valued map P : D � L(E ) is analytic if D is an open subset of C and P is locally representable
by a �•�-convergent power series.
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and A(0) is quasi-compact and simple. In this case, classical analytic perturbation theory for lin-
ear operators [19] posits the existence of some δ > 0 such that A(z) is a simple quasi-compact
operator for each z � Dδ = {ω : |ω| < δ}. Moreover, the quasi-compact decomposition of A(z)
depends analytically on z i.e. there are analytic maps λ(•) : Dδ � C, Π(•) : Dδ � L(E), and
N(•) : Dδ � L(E) such that A(z) has quasi-compact decomposition A(z) = λ(z)Π(z) + N(z).
In [8] the authors considered the question of spectral stability of such analytic operator-
valued maps under conditions similar to (KL) and when the analytic families are induced by a
‘twist’.

Definition 2.3. If M : D � L(E) is analytic on an open neighbourhood D � C of 0 and M(0)
is the identity, then we call M a twist. If A � L(E) then the operators A(z) :=AM(z) are said to
be twisted by M. We say that M is compactly |•|-bounded if for every compact V � D we have

sup
z�V

|M(z)| < �.

We state a version of [8, theorem 2.6] concerning the spectral stability of twisted quasi-
compact operators; we use the superscript (n) to denote the nth derivative.

Theorem 2.4 ([8, theorem 2.6]). Let {Aε}ε�0 satisfy (KL), where A0 is a simple quasi-
compact operator with leading eigenvalue λ0 satisfying α < |λ0|, and let M : D � C be a
compactly |•|-bounded twist. Then there exists θ, ε� > 0 and, for each ε � [0, ε�], analytic
functions λε(•) : Dθ � C, Πε(•) : Dθ � L(E), and Nε(•) : Dθ � L(E) such that Aε(z) is a sim-
ple quasi-compact operator with decomposition Aε(z) = λε(z)Πε(z) + Nε(z) whenever z � Dθ.
Additionally, for each n � N we have the following convergence as ε� 0 on Dθ:

(a) λ(n)
ε (•) converges uniformly to λ(n)

0 (•).
(b) Π(n)

ε (•) converges uniformly to Π(n)
0 (•) in |||•|||.

(c) N(n)
ε (•) converges uniformly to N(n)

0 (•) in |||•|||.

We finish this section with a result concerning the robustness of the condition (KL) to pertur-
bations that are simultaneously small in the operator norms �•� and |•|, which we will frequently
use in the sequel.

Proposition 2.5. Suppose that {Aε}ε�0 satisfies (KL) and {Bε}ε�[0,ε1) � L(E) satisfies
B0 = 0, limε�0�Bε� = 0 and supε�[0,ε1) |Bε| < �. Then there exists ε2 � (0, ε1) so that
{Aε + Bε}ε�[0,ε2) satisfies (KL).

Proof. We prove (KL1), (KL2) and (KL3) separately.
(KL1) As �Bε� � 0, there exists ε� > 0 so that supε�[0,ε�)�Bε� < �. As {Aε}ε�0 satisfies

(KL1), {Bε}ε�[0,ε�) is bounded in L(E), �Bε�� 0, and

|||Aε + Bε � A0||| � |||Aε � A0|||+ �Bε�,

it is clear that (KL1) is satisfied.
(KL2) As {Aε}ε�0 satisfies (KL2) and supε�[0,ε1) |Bε| < �, we have

sup
ε�[0,ε1)

|Aε + Bε| � C1K + sup
ε�[0,ε1)

|Bε| < �.

The required bound follows by iterating this inequality.

6248



Nonlinearity 33 (2020) 6244 H Crimmins and G Froyland

(KL3) By expanding (Aε + Bε)n, applying a counting argument, and using (KL3) for
{Aε}ε�0 we have

�(Aε + Bε)n f� � �An
ε f� +

n�1�

k=0

n!
k!(n � k)!

�Aε�k�Bε�n�k� f�

� C2α
n� f�+ C3Kn

2 | f |+ 2n
n�1�

k=0

�Aε�k�Bε�n�k� f �. (3)

Let β � (α, 1) and choose n � N so that C1α
n < βn. As (KL3) holds for {Aε}ε�0, it follows

that {Aε}ε�0 is bounded in L(E). Hence, as �Bε� � 0, there exists ε�� > 0 so that for every
ε � [0, ε��) we have

C1α
n + 2n

n�1�

k=0

�Aε�k�Bε�n�k � βn.

By applying this inequality to (3) we deduce that for all ε � [0, ε��) one has

�(Aε + Bε)n f� � βn� f� + C3Kn
2 | f | . (4)

Using (KL2) for {Aε + Bε}ε�[0,ε1) one may iterate (4) to obtain for all ε � [0, ε��) and k � Z+

that

�(Aε + Bε)nk f� � βnk� f�+ C4Knk
3 | f | , (5)

where C4, K3 > 0 are independent of k and ε. In the present setting, supε�[0,ε��)�Aε + Bε� is
finite. Using this fact one easily obtains (KL3) from (5). �

3. Stability of the statistical properties of dynamical systems via the naive
Nagaev–Guivarc’h method

In [8] it is shown that when a dynamical system satisfies a central limit theorem or large devia-
tion principle via the Nagaev–Guivarc’h method, then the variance and rate function associated
with these statistical laws are stable under perturbations satisfying (KL). However, the the
method as formulated in [8] (see also [1, 15]) is occasionally inapplicable due to some technical
requirements; for example, it is required that the Perron–Frobenius operator is quasi-compact
on a Banach algebra, and that the Banach space in question is a subspace of L1. Neither con-
dition is generally verified by the transfer operator associated to Anosov maps on any known
Banach space. In [13] Gouëzel details the naive Nagaev–Guivarc’h method, which circumvents
some of these shortcomings with a more abstract formulation of the method. In this section
we recall how a CLT and LDP may be obtained via the naive Nagaev–Guivarc’h method. In
theorem 3.5 we show that when the method is compatible with the stability theory for twisted
quasi-compact operators detailed in section 2, then the variance of the CLT and the rate function
of the LDP are stable to perturbations of the type (KL). In what follows {Yk}k�N is a sequence
of real random variables with partial sums Sn =

�n�1
k=0 Yk satisfying limn�� E(Sn)/n = 0.

Theorem 3.1 (Central limit theorem [13, theorem 2.4]). If there exist a Banach space E,
operator-valued map A(•) : I � L(E), where I is a real open neighbourhood of 0, and ζ � E,
ν � E	 such that:
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(a) A(0) is a simple quasi-compact operator with ρ(A(0)) = 1.
(b) The mapping t 
� A(t) is C2 as a map into (L(E), �•�).
(c) E(eitSn) = ν(A(t)nζ) for all n � N and t � I.

Then {Yk}k�N satisfies a CLT: there exists σ2 � 0 such that Sn/
�

n converges in distribution
to an N(0, σ2) random variable as n ��.

Theorem 3.2 (Large deviation principle [10, remark 2.3]). If there exist a Banach space E,
operator-valued map A(•) : I � L(E), where I is a real open neighbourhood of 0, and ζ � E,
ν � E	 such that:

(a) A(0) is a simple quasi-compact operator with ρ(A(0)) = 1.
(b) The mapping t 
� A(t) is C1 as a map into (L(E), �•�) and t 
� ln ρ(A(t)) is strictly convex

in some neighbourhood of 0.
(c) E(etSn) = ν(A(t)nζ) for all n � N and t � I.

Then {Yk}k�N satisfies an LDP: there exists a non-negative, continuous and convex rate
function r : J � R, where J is an open neighbourhood of 0, such that for every ε � J � (0,�)
we have

lim
n��

1
n

ln Prob(Sn � nε) = �r(ε).

Remark 3.3. As stated, theorem 3.2 differs slightly to the result in [10, remark 2.3], however
a straightforward modification of the arguments from [10] readily yields theorem 3.2.

Both the CLT and LDP are parameterised, and under the settings of theorems 3.1 and 3.2
these parameters are determined by the spectral data of A(t) as follows. As t 
� A(t) is Ck

(k = 1, 2) and A(0) is a simple quasi-compact operator, by [13, proposition 2.3] there exists
θ > 0 and Ck maps λ(•) : (�θ, θ) � C, Π(•) : (�θ, θ) � L(E), and N(•) : (�θ, θ) � L(E) such
that for for t � (�θ, θ) the operator A(t) is quasi-compact and simple with leading eigenvalue
λ(t) and decomposition A(t) = λ(t)Π(t) + N(t). The variance of CLT is

σ2 = λ(2)(0), (6)

and the rate function of the LDP is

r(s) = sup
t�(�θ,θ)

(st � ln |λ(t)|).

Moreover, due to the strict convexity and continuous differentiability of t 
� ln |λ(t)| on
(�θ, θ), and the application of the local Gartner–Ellis theorem [15, lemma XIII.2] used to
obtain theorem 3.2, we have that the domain of the rate function is

�
d
dz

ln |λ(z) |
����
z=�θ

,
d
dz

ln |λ(z) |
����
z=θ

�
. (7)

In theorem 3.1 the characteristic function of Sn is encoded by νA(t)nζ whilst in theorem
3.2 it is the moment-generating function of Sn that is encoded. These settings are frequently
unified by the following hypothesis:

Hypothesis 3.4. Suppose that {Yk}k�N is a sequence of real random variables with partial
sums Sn =

�n�1
k=0 Yk satisfying limn�� E(Sn)/n = 0. We say that {Yk}k�N satisfies hypothesis

3.4 if there exists a Banach space (E, �•�), ζ � E, ν � E	, and an analytic operator-valued map
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A : D 
� L(E), where D � C is an open neighbourhood of 0, such that A(0) is a simple quasi-
compact operator, ρ(A(0)) = 1, t 
� ρ(A(t)) is strictly convex in some real neighbourhood of
0, and

E(ezSn) = νA(z)nζ

for every z � D and n � N.

It is clear that if hypothesis 3.4 holds then theorems 3.1 and 3.2 both hold i.e. {Yk}k�N
satisfies a CLT and LDP. Hypothesis 3.4 is frequently verified by applications of the naive
Nagaev–Guivarc’h method to dynamical systems. In addition, in these applications the map
z 
� A(z) arises from a twist i.e. there exists a twist M : D 
� L(E) such that A(z) = A(0)M(z).
In this case we can apply theorem 2.4 to obtain stability of the variance and rate function with
respect to perturbations satisfying (KL).

Theorem 3.5. Let {Yk}k�N be a sequence of real random variables satisfying hypothe-
sis 3.4. Suppose that |•| is a second norm on E so that the closed, unit ball in (E, �•�) is
relatively compact with respect to |•| and that there exists a compactly |•|-bounded twist
M : D � L(E) such that A(z) = A(0)M(z). If {Aε}ε�0 satisfies (KL), where A0 = A(0), then
there exists θ, ε� > 0 and, for every ε � [0, ε�], analytic mapsλε(•) : Dθ � C,Πε(•) : Dθ � L(E)
and Nε(•) : Dθ � L(E) such that for every ε � [0, ε�] and z � Dθ the operator Aε(z) has quasi-
compact decomposition Aε(z) = λε(z)Πε(z) + Nε(z) and as ε� 0 the maps λε(•), Πε(•) and
Nε(•) converge as in theorem 2.4. Moreover, we have stability of the parameters of the CLT
and LDP for {Yk}k�N in the following sense:

(a) The variance is stable: limε�0 λ(2)
ε (0) = σ2.

(b) The rate function is stable: for each sufficiently small compact subset U of the domain of
the rate function rg there exists an interval V � (�θ, θ) so that

lim
ε�0

sup
z�V

(sz � log |λε(z)|) = r(s)

uniformly on U.

Proof. By theorem 2.4 there exists θ, ε� > 0 and, for each ε � [0, ε�], maps λε(•),Πε(•) and
Nε(•) as required for theorem 3.5. The proof of the stability of the variance follows from (6) and
theorem 2.4. After possibly reducing the value of θ, so that the domain of the rate function is
the one given in theorem 3.2, the stability of the rate function follows from [8, theorem 3.8 and
proposition 3.9] with some minor modifications that we will now discuss. In [8] it is required
that Aε(z) is positive for each ε � 0 and z � R so that λε(z) is positive too; we remove this
assumption and consequently deal with |λε(z)| instead. By theorem 2.4 and the reverse trian-
gle inequality we have uniform convergence of |λε(•)| to |λ0(•)| on each compact subset of
Dθ. Although [8, theorem 3.8] proves a Hölder estimate for the convergence of the rate func-
tions, straightforward modifications to the proof yields uniform convergence as is required for
theorem 3.5. The proof of [8, proposition 3.10] holds upon replacing [8, lemma 3.9] with the
condition that z 
� ln ρ(L(z)) is strictly convex in a real neighbourhood of 0, and noting that
z 
� ln |λ0(z)| is C1 on (�θ, θ). �

4. Stability of statistical limit laws for Anosov maps

It is classical that topologically transitive Anosov diffeomorphisms satisfy a central limit
theorem and large deviation principle for sufficiently smooth observables: such results were
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first established by using Markov partitions to reduce to the case of subshifts of finite type
[26, 27]. In order to apply the stability results from section 3 to Anosov maps we require that
these limit laws hold due to the naive Nagaev–Guivarc’h method; verifying this is the main
point of this section. In particular, using the functional analytic setup in [14], we confirm that
{g � Tk}k�N satisfies hypothesis 3.4 for T a Cr+1 Anosov map, r > 1, and appropriate observ-
ables g. Theorem 3.5 then yields stability of the variance and rate function to perturbations of
type (KL), which forms the basis for our results in sections 5–7.

4.1. The functional analytic setup of Gouºzel and Liverani

We review the functional analytic setup of [14]. Let d > 1 and X be a d-dimensional, C�,
compact, connected Riemannian manifold and T � Cr+1(X, X), r > 1, be an Anosov map. In
[14] the metric on X is replaced by an adapted metric x 
� •, •�x such that T exhibits strict
contraction and expansion in the stable and unstable directions, respectively. More specifically,
if x 
� �•�x denotes the norm induced by the adapted metric, and x 
� Es(x) and x 
� Eu(x)
denote the stable and unstable bundles, respectively, associated to T, then there exists ν�1

u , νs �
(0, 1) such that

sup
x�X

����DxT|Es(x)

����
x

� νs and sup
x�X

����DxT�1|Eu(x)

����
x

� ν�1
u .

Following [5, proposition 5.2.2], we review the construction of such a metric in section 6.1
as the specific choice of metric will later simplify some arguments. When T has a unique
SRB measure we denote it by μ. Let Ω denote both the Riemannian measure on X induced by
the adapted metric and the linear functional f 
�

�
fdΩ. The transfer operator L : Cr(X,R) �

Cr(X,R) associated with T is defined by

	
(Lh) • udΩ =

	
h • (u � T)dΩ, (8)

where u, h � Cr(X,R). For L to have ‘good’ spectral properties it is necessary to consider it as
an operator on an appropriately chosen anisotropic Banach space. We now describe the con-
struction of such a space from [14]. Core to this construction is a set Σ of ‘admissible leaves’:
small submanifolds of bounded curvature that are uniformly close to the stable directions of
T; see [14, section 3] for the full definition. For each W � Σ we denote the collection of Cr

vector fields that are defined on a neighbourhood of W by V r(W), and by Cq
0 (W,R) the set of

functions in Cq(W,R) that vanish on a neighbourhood of ∂W. For h � Cr(X,R), q > 0, p � N

with p � r let

�h��p,q = sup
W��

sup
v1,...vp�Vr(W)

|vi|Cr �1

sup
ϕ�Cq

0 (W,R)
|ϕ|Cq �1

	

W
(v1 . . . vph) •ϕ.

Then

�h�p,q = sup
0�k�p

�h��k,q+k = sup
p��p,q��q+p�

�h��p�,q� (9)

is a norm on Cr(X,R). Denote by Bp,q the completion of Cr(X,R) under this norm. As
the naive Nagaev–Guivarc’h method requires a complex Banach space, we consider the
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complexification Bp,q
C of the spaces Bp,q. When endowed with the norm2

�hr + ihi�p,q = max{�hr�p,q, �hi�p,q}, (10)

Bp,q
C is a complex Banach space. It is on this space that the operator L is quasi-compact.

Theorem 4.1 ([14, theorem 2.3]). If p � Z+ and q > 0 satisfy q + p < r then the operator
L : Bp,q

C � Bp,q
C has spectral radius one. In addition, L is quasi-compact with ρess(L) � {ω �

C : |ω| � max{ν�p
u , νq

s }}. Moreover, the eigenfunctions corresponding to eigenvalues of mod-
ulus 1 are distributions of order 0, i.e., measures. If the map is topologically transitive, then 1
is a simple eigenvalue and no other eigenvalues of modulus one are present.

4.2. The naive Nagaev�Guivarc�h method for Anosov maps

The main technical result of this section is proposition 4.3, which verifies hypothesis 3.4 in the
setting of section 4.1. As 1 � Bp,q

C , for any g � Cr(X,R) we may define ezg by the power series��
k=0 zkgk/k!. We define Mg(•) : C� L(Bp,q

C ) by setting Mg(z)(h) = ezgh for h � Cr(X,C) and
then passing to Bp,q

C by density.

Proposition 4.2. Let p � Z+, q > 0 satisfy p + q < r. If g � Cr(X,R) and Mg : C�
L(Bp,q

C ) is defined by Mg(z)( f ) = ezgf, then Mg is a compactly �•�p�1,q+1-bounded twist.

By [14, proposition 4.1] there is a continuous injection from Bp,q
C into D�

q(X), the distribu-
tions of order at most q. With this injection in mind, we can consider some elements of Bp,q

C
as probability measures (exactly when they are probability measures in D�

q(X)). Recall that
g � Cr(X,R) is an L2(μ)-coboundary if there is φ � L2(μ) so that g = φ� φ � T.

Proposition 4.3. Assume thatL is a simple quasi-compact operator. Let p � Z+ and q > 0
satisfy q + p < r. Let m � Bp,q be a probability measure, and suppose g � Cr(X,R) satisfies�

gdμ = 0 and is not an L2(μ)-coboundary. DefineL(•) : C� L(Bp,q
C ) byL(z) = LMg(z). Then

{g � Tk}k�N, when considered on the probability space (X, m), satisfies hypothesis 3.4 with
Banach space Bp,q

C and operator-valued map L(•).

With proposition 4.3 in hand, by theorems 3.1 and 3.2 we immediately obtain a CLT
and LDP (on appropriate probability spaces) for {g � Tk}k�N whenever g � Cr(X,R) satisfies�

gdμ = 0 and is not an L2(μ)-coboundary.Moreover, as Mg is a compactly�•�p�1,q+1-bounded
twist and the unit ball in Bp,q

C is relatively compact in �•�p�1,q+1 [14, lemma 2.1], theorem 3.5
yields stability of the variance and rate function with respect to perturbations of the type (KL).
In section 7 we use this fact to numerically approximate the statistical properties of Anosov
maps on tori. For the moment we state the following application on the stability of the rate func-
tion for deterministic perturbations to topologically transitive Anosov maps, which are known
to satisfy (KL) as per [14, section 17]. This result should be compared to [14, theorem 2.8,
remark 2.11]. For y � R we denote by τ y the map x 
� x + y.

Theorem 4.4 (Stability of the rate function under deterministic perturbations). Let T(•) �
C1([0, 1], Cr+1(X, X )) be such that T(0) is a topologically transitive Anosov diffeomorphism.
Let p � Z+ and q > 0 satisfy p + q < r. Fix a probability measure m � Bp,q and suppose
g � Cr(X,R) satisfies

�
gdμ = 0 and is not an L2(μ)-coboundary. There exists ε > 0 and, for

each t � [0, ε], a number At and map rt : J � At � R, where J is an open real neighbourhood

2 We abuse notation and denote the norm on Bp,q
C by �•�p,q.

6253



Nonlinearity 33 (2020) 6244 H Crimmins and G Froyland

of 0, so that {g � T(t)k � At}k�N satisfies an LDP on (X, m) with rate function rt, At � A0 = 0
and rt � τ�At � r0 compactly on J.

We defer the proofs of propositions 4.2 and 4.3, and theorem 4.4 to appendix A.

5. Approximating the statistical data of Anosov maps

In this section we introduce a scheme for approximating the spectrum of the Perron–Frobenius
operator associated to an Anosov map on the d-dimensional torus Td , which we identify with
Rd/Zd. The scheme proceeds by convolving the Perron–Frobenius operator with a compactly
supported mollifier, and then approximating the ‘smoothened’ operator using Fourier series. A
similar idea is developed in [4], where Ulam’s method is considered instead of Fourier series
and convergence of the SRB measure and variance are obtained under this scheme. We note
that [4] did not include any computations (as we do, in section 7) nor did they consider the
stability of the rate function.

Throughout this section we adopt the setting, assumptions and notation of section 4.1, and
fix p � Z+ and q > 0 satisfying p + q < r. Let Leb denote the normalised Haar measure on
Td . For some ε1 > 0, suppose that the family of stochastic kernels {qε}ε�(0,ε1) � C�(Td,R)
satisfies the following conditions:

(S1) qε � 0 and
�

qεdLeb = 1;
(S2) The support of qε is contained in Bε(0).

For such a family we define operators Qε : Cr(Td,C) �Cr(Td,C) by Qε f = f 	 qε. Recall
that convolution is defined with respect to the Haar measure Leb on Td, which may differ
from the measure Ω that is induced by the adapted metric. It is evident, however, that the
Radon–Nikodym derivatives d Leb

d� and d�
d Leb both exist, and are elements of C�(Td,R). As a

consequence we obtain the following characterisation of Qε:

Lemma 5.1. Qε extends to a bounded operator Qε : Bp,q
C �C�(Td ,C). Consequently, Qε is

compact as an element of L(Bp,q
C , Cm(Td,C)) for every m � Z+. Moreover, Qε is compact as an

element of L(Bp,q
C ) and, for each m1, m2 � Z+, as an element of L(Cm1 (Td ,C), Cm2(Td,C)).

Let L0 = L and, for each ε � (0, ε1), let Lε = QεL0, which is in L(Bp,q
C ) by virtue of the

previous lemma.
Lemma 5.2. There exists ε2 � (0, ε1) so that {Lε}ε�[0,ε2) satisfies (KL) on Bp,q

C with |•| =
�•�p�1,q+1.

By lemma 5.1, for each ε � (0, ε1) the operator Lε is compact and, for every m � Z+, maps
the unit ball of Bp,q

C into a bounded subset of Cm(Td ,C). For this reasonLε may be approximated
with Fourier series for each ε > 0. For k = (k1, . . . , kd) � Zd we set �k�� = maxi |ki| and
�k�1 =

�
i |ki|. For each n � Z+ define Πn : C(Td,C) �C(Td,C) by

(Πn f )(x) =
�

k�Zd

�k���n

f̂ (k)e2πix•k,

where f̂ denotes the Fourier transform3 of f. For every ε � (0, ε1) and n � Z+ let Lε,n = ΠnLε.
To simplify our notation, we set Lε,� = Lε. Our main technical result for this section is the
following.

3 Specifically, �f (k) =
�

Td f (x)e�2πix•k d Leb(x).
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Proposition 5.3. There exists ε3 � (0, ε2) and a map N : [0, ε3) � N � {�} with
N�1(�) = {0}, so that for any map n : [0, ε3) � N � {�} with n � N the family of operators
{Lε,n(ε)}ε�[0,ε3) satisfies (KL) on Bp,q

C with |•| = �•�p�1,q+1.

Remark 5.4. By proposition 5.3 we may apply the results in [23] to {Lε,n(ε)}ε�[0,ε3). Hence,
all the isolated eigenvalues of L with modulus strictly greater than the constant α in (2) are
approximated by eigenvalues ofLε,n(ε), with error vanishing as ε� 0. When such an eigenvalue
of L is simple, we additionally have that the corresponding eigenprojection and eigenvector
are approximated by those of Lε,n(ε) in |||•||| and |•|, respectively.

Remark 5.5. From the proof of proposition 5.3 it is clear that asymptotic behaviour of n(ε)
as ε� 0 is determined by the family of stochastic kernels {qε}ε>0. By restricting to a specific
family of kernels one could more explicitly describe the dependence of ε on n(ε). This is exactly
what is done in [4, section 2.6]: in their scheme it is shown that n(ε) = O(ε�r) for an exponent
r > 0 that may be estimated in terms of dynamics, where n represents the maximum size of
a polytope used in an Ulam discretisation, and ε represents the dilation of a fixed stochastic
kernel q (i.e qε(x) := ε�kq(ε�1x)). See [4, section 2.6] for more details.

Propositions 5.3 and 4.3 allow us to apply theorem 3.5 to obtain the stability of the invariant
measure, variance and rate function. We note that since Anosov diffeomorphisms on tori are
mixing [20, proposition 18.6.5], it follows that 1 is the only eigenvalue of L of modulus 1,
and is a simple eigenvalue. In particular T has a unique SRB measure μ � Bp,q, as required by
theorem 3.5.

Theorem 5.6. Suppose that g � Cr(Td,R) satisfies
�

gdμ = 0 and is not a L2(μ)-
coboundary. Denote by Mg(•) : C� L(Bp,q

C ) the map Mg(z)f = ezgf. Let N, n satisfy the con-
ditions of proposition 5.3. There exists θ, ε� > 0 so that for each ε � [0, ε�) and z � Dθ the
operator Lε,n(ε)(z) is quasi-compact and simple with leading eigenvalue λε(z) depending ana-
lytically on z. Moreover, we have stability of the following statistical data associated to T and
{g � Tk}k�N:

(a) The invariant measure is stable: there exists eigenvectors vε � Bp,q
C of Lε,n(ε) for the

eigenvalue λε(0) for which limε�0�vε � μ�p�1,q+1 = 0.
(b) The variance is stable: limε�0 λ(2)

ε (0) = σ2.
(c) The rate function is stable: For each sufficiently small compact subset U of the domain of

the rate function r there exists an interval V � (�θ, θ) so that

lim
ε�0

sup
z�V

(sz � log |λε(z)|) = r(s)

uniformly on U.

Remark 5.7. In section 7 we aim to estimate the statistical properties of an Anosov map T
using lemma 5.2, proposition 5.3 and theorem 5.6. However, these results concern the stability
of the spectral data of the transfer operator associated to an Anosov map T on the d-dimensional
torus Td equipped with an adapted metric. In particular, this operator, say L�, is defined by
duality with respect to the adapted Riemannian measure Ω. From a computational perspective
one would much rather approximate the transfer operator LLeb that is defined by duality with
respect to Leb, the Haar probability measure on Td , since this removes the need to compute
any quantities that depend on the adapted metric. Luckily, the relationship between these oper-
ators (and their twists) is simple: they are conjugate and therefore have the same spectrum (see
proposition B.1). Hence an approximation of the spectrum of LLeb(z) is also an approxima-
tion of the spectrum of L�(z). However, it is not clear from the proofs in this section that if
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{Πn(ε)QεL�}ε�[0,ε�) satisfies (KL) due to proposition 5.3 then so too does {Πn(ε)QεLLeb}ε�[0,ε�)

i.e. a numerical scheme that is valid for L� may not be valid for LLeb. In appendix B we show
that this obstruction does not occur, at least not in the current setting; the relevant results are
propositions B.1–B.3.

The remainder of this section is dedicated to the proofs of the aforementioned results.

The proof of lemma 5.1. Let ε � (0, ε1), k � Nd and f � Cr(Td ,C). Denote ∂�k�1

∂x
k1
1 ... ∂x

kd
d

by

∂k. From the beginning of [14, section 4] the map h 
�
�

hdΩ is bounded on Bp,q
C . Moreover,

multiplication by Cr functions is bounded on Bp,q
C by [14, lemma 3.2]. These facts, together

with standard properties of convolutions, imply that there exists a C independent of f, k and ε
such that

sup
x�Td

|(∂k(qε 	 f ))(x)| = sup
x�Td

����

	
(∂kqε)(x � y) f (y) d Leb(y)

����

= sup
x�Td

����

	
(∂kqε)(x � y) f (y)

d Leb
dΩ

(y)dΩ(y)

���� � C

���� f
d Leb
dΩ

����
p,q

�∂kqε�Cq .

Since d Leb
d� � C�(Td ,R), using the continuity of multiplication by Cr functions again yields

�Qε f�C�k�1 � C�
����

d Leb
dΩ

����
Cr
� f�p,q�qε�Cq+�k�1

for some appropriate constant C�. Hence, Qε extends to a bounded operator Qε : Bp,q
C �

Cm(Td,C) for every m � Z+. It follows that Qε also extends to a bounded operator Qε : Bp,q
C �

C�(Td,C). As bounded sets in C�(Td ,C) are compact in Cm(Td ,C) for every m � Z+, each
operator Qε : Bp,q

C �Cm(Td,C) is therefore compact. That Qε : Bp,q
C � Bp,q

C is compact follows
from the continuous embedding of Cr(Td ,C) into Bp,q

C [14, remark 4.3]. It is standard that
Qε � L(Cm1 (Td,C), Cm2(Td,C)) for each m1, m2 � Z+. �

The proof of lemma 5.2. For each y � Td let Ty : Td � Td be defined by Ty(x) = T(x) +
y, and let LTy denote the transfer operator associated with Ty (defined by duality as in (8)).
Let h � Cr(Td ,C) and x, y � Td. Let τ y denote the translation map induced by y. As DxTy =
(DT(x)τ y)(DxT ) we have

(Lh)(x � y) = (h|det DT|�1) � T�1(x � y)

= (h � T�1
y )(x) •

���det DT�1
y (x)T

���
�1

= (h � T�1
y )(x) •

���det DT�1
y (x)Ty

���
�1
•
��det (Dx�yτy)�1

���1

= (LTyh)(x) |det Dxτ�y| .

Hence,

(Lεh)(x) =
	

qε(y)(Lh)(x � y) d Leb(y) =
	

qε(y)|det Dxτ�y|(LTyh)(x) d Leb(y).

(11)
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For ε � (0, ε1) let Aε be defined by

(Aεh)(x) =
	

qε(y)(LTyh)(x) d Leb(y).

Set A0 = L and, for each ε � [0, ε1), let Fε = Lε � Aε. We aim to apply proposition 2.5 to
{Aε}ε�[0,ε1) and {Fε}ε�[0,ε1), which would imply the required result as Lε = Aε + Fε.

We begin by proving that {Aε}ε�[0,ε1) satisfies (KL). Note that {Aε}ε�[0,ε1) is a perturbation
of the kind considered in [14]. Specifically, we take Td to be their Ω, the Haar measure Leb
to be their μ, and set g(ω, x) = qε(ω). Therefore, by the discussion between corollary 2.6 and
theorem 2.7 in [14], there exists some ε� � (0, ε1) such that {Aε}ε�[0,ε�) satisfies (KL) on Bp,q

C
with |•| = �•�p�1,q+1 provided that

(C1) For a fixed, small, open (in the Cr+1(Td,Td) topology) neighbourhood U of T we have
Ty � U whenever y � Bε�(0); and

(C2) limε�0
�

qε(y)dCr+1(Ty, T) d Leb(y) = 0.

The condition (C2) is derived from [14, equation (2.5)] by setting g(ω, x) = qε(ω), and
observing that x 
� qε(ω) is constant and so has C p+q norm |qε(ω)| = qε(ω). The other term in
[14, equation (2.5)] is 0 since

�
qε(ω)dLeb(ω) = 1. As Td is compact and T � Cr+1(Td,Td),

the map x 
� Dk
xT is uniformly continuous for each 0 � k � r + 1. It then follows from the

definition of Ty that

lim
ε�0

sup
y�Bε(0)

dCr+1(Ty, T) = 0.

Recalling that qε satisfies (S1) and (S2), it is clear that there exists ε� � (0, ε1) so that {Aε}ε�[0,ε�)

satisfies both (C1) and (C2), and therefore also (KL).
We will now prove that {Fε}ε�[0,ε�) satisfies the requirements of proposition 2.5. For y � Td

let fy : Td � R be defined by fy(x) = 1 � det Dxτ�y. One verifies that

(Fεh)(x) =
	

qε(y) fy(x)(LTyh)(x) d Leb(y)

From the definition of �•�p,q and (S1) we obtain

�Fεh�p,q �
	

qε(y)� fy • (LTy h)�p,q d Leb(y).

As multiplication by Cr functions is continuous on Bp,q
C ([14, lemma 3.2]), using (S1) there is

some C > 0 such that

�Fε�p,q � C sup
y�supp qε

�LTy�p,q

	
qε(y)� fy�Cr d Leb(y). (12)

As mentioned at the beginning of [14, section 7], the estimates in [14, lemma 2.2] apply
uniformly to every map in U and so there exists some η > 0 such that supy�Bη (0)�LTy�p,q <

�. Since det Dxτy =
d�

d Leb (x + y) d Leb
d� (x), and d�

d Leb , d Leb
d� � C�(Td,R), limy�0 fy = 0 in

Cr(Td ,R). Applying these facts and (S1) to (12) yields

lim
ε�0

�Fε�p,q � C lim sup
ε�0

sup
y�Bε(y)

� fy�Cr sup
y�Bε(0)

�LTy�p,q = 0. (13)

The same argument applies when estimating �Fε�p�1,q+1, and so there exists ε�� � (0, ε�) so that
{Fε}ε�[0,ε��) satisfies the requirements for proposition 2.5.
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Hence proposition 2.5 applies to {Aε}ε�[0,ε��) and {Fε}ε�[0,ε��). Namely, there exists
ε2 � (0, ε��) so that {Aε + Fε}ε�[0,ε2) satisfies (KL). Since Aε + Fε = Lε, this completes the
proof. �

We require the following classical result on the convergence of Fourier series on Td (see
e.g. [28, proposition 5.6 and the proof of theorem 5.7]).

Proposition 5.8. For each m � N we have Πn � Id strongly in L(Cm+� d+1
2 �, Cm).

The proof of proposition 5.3. By lemma 5.2 the family of operators {Lε}ε�[0,ε2) satis-
fies (KL) on Bp,q

C with |•| = �•�p�1,q+1. We plan to find N : (0, ε2) � N so that we may apply
proposition 2.5 with Aε = Lε and Bε = Lε,N(ε) � Lε.

By proposition 5.8, Πn � Id strongly in L(Cr+� d+1
2 �, Cr). As the unit ball of Cr+1+� d+1

2 � is

compact in Cr+� d+1
2 �, proposition 5.8, the uniform boundedness principle and standard esti-

mates imply that Πn � Id in L(Cr+1+� d+1
2 �, Cr). As Cr embeds continuously into Bp,q

C [14,
remark 4.3], there exists C > 0 so that, for each ε � [0, ε2) and n � N, we have

�Lε,n � Lε�p,q � C�Πn � Id�
L

�
Cr+1+� d+1

2 �,Cr
��Qε�

L

�
Bp,q

C ,Cr+1+� d+1
2 ���L�p,q.

Hence, as �Qε�
L

�
Bp,q

C ,Cr+1+� d+1
2 �

� is finite by lemma 5.1, for each ε � (0, ε2) there exists N1(ε)

so that �Lε,n � Lε�p,q � ε whenever n > N1(ε). The same argument produces for each ε �
(0, ε2) an N2(ε) so that �Lε,n � Lε�p�1,q+1 � ε whenever n � N2(ε). To summarise, if N(ε): =
max{N1(ε), N2(ε)} and n : (0, ε2) � N is such that n � N, then limε�0�Lε,n(ε) � Lε�p,q = 0 and

sup
ε�(0,ε2)

�Lε,n(ε) � Lε�p�1,q+1 < �. (14)

Hence for each map n � N we may apply proposition 2.5 as planned to produce an εn �
(0, ε2) so that {Lε,n(ε)}ε�[0,εn) satisfies (KL) on Bp,q

C with |•| = �•�p�1,q+1. Examining the
proof of proposition 2.5, we observe that εn may be chosen independently of n since
limε�0 sup��N(ε)�Lε,� � Lε�p,q = 0 and

sup
ε�(0,ε2)

sup
��N(ε)

�Lε,� � Lε�p�1,q+1 < �.

�

The proof of theorem 5.6. Hence, by proposition 4.3, the sequence {g � Tk}k�N satisfies
hypothesis 3.4 with operator-valued map z 
� LMg(z) and Banach space Bp,q

C . The closed, unit
ball in Bp,q

C is relatively compact with respect to �•�p�1,q+1 by [14, lemma 2.1] and Mg is a
compactly �•�p�1,q+1-bounded twist by proposition 4.2. Since {Lε,n(ε)}ε�[0,ε3) satisfies (KL),
we have verified all the requirements of theorem 3.5, and so all the claims in the statement of
theorem 5.6 follow, with the exception of the stability of the invariant measure. This claim
follows from [12, proposition 2.4, remark 2.5], whose hypotheses are verified due to the
convergence of eigenprojections in theorem 2.4. �

6. Statistical stability for some Anosov maps under stochastic perturbations

In this section we show that the statistical properties of some Anosov maps on the d-
dimensional torus Td may be approximated using (weighted) Fourier series by realising the
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Fejér kernel as a stochastic perturbation. More generally, our results expand upon the stability
results in [14, theorem 2.7] by allowing the stochastic kernel to be supported on all of Td at the
cost of additional requirements on the dynamics. As a consequence of this generalisation, we
no longer require a mollifier to estimate the spectral and statistical properties of Anosov maps
as in section 5, improving the computational aspect of our theory.

We adopt the setting, assumptions and notation from section 4.1 and fix p � Z+ and q >
0 satisfying p + q < r. Our main assumption on the dynamics is that the associated transfer
operator L satisfies

sup
y�Td

max{�τyL�p,q, �τyL�p�1,q+1} < �, (15)

where τ y denotes the translation operator induced by y � Td. In section 6.1 we provide some
conditions for a map to satisfy (15). For example, proposition 6.6 implies that (15) holds for
an iterate of T if T is close to a hyperbolic linear toral automorphism. Note that throughout this
section we treat τ y as both a composition operator and map.

For some ε1 > 0, suppose that {qε}ε�(0,ε1) � L1(Leb) is a family of stochastic kernels
satisfying (S1) and

(S3) For every η > 0, we have limε�0
�

Td\Bη(0)qε d Leb = 0.

(S3) replaces (S2) from section 5 and allows the support of each qε to be all of Td . Also
note that we place no regularity requirements on the kernels qε. For ε > 0 define Lε := qε 	 L,
and let L0 :=L. Our main technical result for this section is the following.

Proposition 6.1. If (15) holds then there exists ε2 � (0, ε1) so that {Lε}ε�[0,ε2) satisfies (KL)
on Bp,q

C with |•| = �•�p�1,q+1.

Remark 6.2. The same comments as those in remark 5.4 apply to the family of operators
{Lε}ε�[0,ε2). That is, the spectral data associated to the eigenvalues of L0 with modulus greater
than the constant α appearing in (2) are well approximated by the spectral data of associated
to eigenvalues of Lε, with error vanishing as ε� 0.

As noted before the statement of theorem 5.6, since T is an Anosov diffeomorphism on
a torus, L is a simple quasi-compact operator. Thus, if (15) holds then by proposition 6.1 the
peripheral spectral data, invariant measure, variance and rate function are stable with respect to
the class of stochastic perturbations in consideration. The proof is the same as that of theorem
5.6.

Theorem 6.3. Assume that L satisfies (15). Suppose that g � Cr(Td ,R) satisfies
�

gdμ = 0
and is not an L2(μ)-coboundary. Denote by Mg : C� L(Bp,q

C ) the map defined by Mg(z)f = ezgf.
There exists θ, ε� > 0 so that for each ε � [0, ε�) and z � Dθ the operatorLε(z) is quasi-compact
and simple with leading eigenvalue λε(z) depending analytically on z. Moreover, we have
stability of the following statistical data associated to T and {g � Tk}k�N:

(a) The invariant measure is stable: there exists eigenvectors vε � Bp,q
C ofLε for the eigenvalue

λε(0) for which limε�0 �vε � μ�p�1,q+1 = 0.
(b) The variance is stable: limε�0 λ(2)

ε (0) = σ2.
(c) The rate function is stable: For each sufficiently small compact subset U of the domain of

the rate function rg there exists an interval V � (�θ, θ) so that

lim
ε�0

sup
z�V

(sz � log |λε(z)|) = r(s)

uniformly on U.
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A key application of the results in this section is the rigorous approximation of the
spectral and statistical data of some Anosov maps using Fourier series. We define the nth
one-dimensional Fejér kernel Kn,1 on T1 = R/Z by

Kn,1(t) =
n�

k=�n

�
1 �

|k|
n + 1

�
e2πikt.

The nth d-dimensional Fejér kernel Kn,d on Td is defined by

Kn,d(t) =
d


i=1

Kn,1(ti),

where ti is the ith component of t � Td . It is well known that the 1-dimensional Fejér kernels
satisfy (S1) and (S3) as n �� (they are a summability kernel; see [22, sections 2.2 and 2.5]).
It is routine to verify that the d-dimensional kernels consequently satisfy the same conditions,
and so we may apply proposition 6.1 with q1/n = Kn,d . A straightforward computation yields

Kn,d(t) =
�

k�Zd

�k���n

d


i=1

�
1 �

|ki|
n + 1

�
e2πik•t,

and, therefore, convolution with the Fejér kernel may be represented using weighted Fourier
series:

(Kn,d 	 f )(x) =
�

k�Zd

�k���n

d


i=1

�
1 �

|ki|
n + 1

�
f̂ (k)e2πik•x. (16)

By the above considerations and proposition 6.1 and theorem 6.3 we obtain the following
stability result for stochastic perturbations induced by the Fejér kernel.

Corollary 6.4. Assume that L satisfies (15) and that g � Cr(Td ,R) satisfies
�

gdμ = 0 and
is not an L2(μ)-coboundary. For n � N let L1/n :=Kn,d 	 L, where Kn,d is the d-dimensional
Fejér kernel, and let L0 = L. There exists N > 0 so that the family of operators {L1/n}n�N

satisfies (KL) on Bp,q
C with |•| = �•�p�1,q+1. Consequently, we have stability of the invariant

measure, variance, and rate function associated to T and {g � Tk}k�N as in theorem 6.3.

The operators L1/n are finite-dimensional and leave the span of {e2πik•x : �k�� � n} invari-
ant. Therefore, we could compute all of the spectral data of L1/n via its matrix representation
with respect to the basis {e2πik•x : �k�� � n} and use corollary 6.4 to estimate the statistical
properties of T.

Remark 6.5. The comments made in remark 5.7 also apply here: the stability results in
proposition 6.1, theorem 6.3 and corollary 6.4 apply to the transfer operator L� that is associ-
ated to T via duality with respect to Ω, rather than the transfer operatorLLeb that is associated to
T via duality with respect to Leb. In appendix B we show that these operators, and their twists,
are conjugate, and therefore have the same spectrum, and that if proposition 6.1, theorem 6.3
and corollary 6.4 apply to L� then they also hold true when L� is replaced by LLeb.

The proof of proposition 6.1. For each η � (0, 1/2) let pη be the characteristic function of
Bη(0). For ε � 0 let aε,η =

�
qεpηdLeb, Aε,η = a�1

ε,η (qεpη) 	 L and Bε,η = (qε(1 � a�1
ε,η pη)) 	 L.
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Set A0,η = L and B0,η = 0. Our goal is to apply proposition 2.5 by showing that (i) for some
η > 0 there exists ε� � (0, ε1) so that {Aε,η}ε�[0,ε�) satisfies (KL), and then proving (ii) that
{Bε,η}ε�[0,ε�) satisfies the necessary requirements of proposition 2.5. As Lε = Aε,η + Bε,η , this
yields the required statement.

Since {a�1
ε,ηqεpη}ε�(0,ε1) satisfies (S1) the perturbation {Aε,η}ε�[0,ε1) is similar to the (convo-

lution type) perturbation considered in lemma 5.2. We will explain how to modify the proof
of lemma 5.2 to obtain the required result. Examining the proof of lemma 5.2, we note that
it was not important that the family of kernels was in C�, indeed it is sufficient for the ker-
nels to be contained in L1(Leb). We must verify the conditions (C1) and (C2), and a different
argument is required here since {a�1

ε,ηqεpη}ε�0 does not satisfy (S2). By choosing η sufficiently
small we may make the support of every a�1

ε,ηqεpη small enough so that for every ε � [0, ε1)
and y � supp qεpη the map Ty(x) :=T(x) + y is in the set U from (C1) in lemma 5.2. This
verifies (C1) in our setting; we will now verify (C2). By (S1) and (S3) for {qε}ε�0 we have
limε�0 a�1

ε,η� = 1 for every η� � (0, η]. Hence, for every η� � (0, η) we have

lim
ε�0

	
a�1
ε,η |qε(y)pη(y)|dCr+1(Ty, T) d Leb(y)

= lim
ε�0

	

Bη (0)
qε(y)dCr+1(Ty, T) d Leb(y)

= lim
ε�0

�	

Bη(0)\Bη� (0)
qε(y)dCr+1(Ty, T) d Leb(y) +

	

Bη� (0)
qε(y)dCr+1(Ty, T) d Leb(y)

�

� lim
ε�0

�

sup
y�Bη (0)\Bη� (0)

dCr+1 (Ty, T)

� 	

Td\Bη� (0)
qε(y) d Leb(y) + sup

y�Bη� (0)
dCr+1(Ty, T)

= sup
y�Bη� (0)

dCr+1 (Ty, T), (17)

where we have used both (S1) and (S3). Using the fact that limη��0 supy�Bη� (0) dCr+1(Ty, T) = 0
we obtain (C2) from (17). It remains to provide an alternative proof of the convergence of
Fε � 0 from (13) i.e. that the operators

Fε : h 
�
	

a�1
ε,ηqε(y)pη(y) fy(x)(LTyh)(x) d Leb(y)

converge to 0 in L(Bp,q) and L(Bp�1,q+1) as ε� 0, where fy = 1 � det Dxτ�y as in the proof of
lemma 5.2. Using (S3) and the fact that limε�0 a�1

ε,η = 1 we have for each η� � (0, η) that

lim
ε�0

	
a�1
ε,ηqε(y)pη(y)� fy�Cr d Leb(y)

� lim
ε�0

�	

Bη� (0)
qε(y)� fy�Cr d Leb(y) +

	

Bη (0)\Bη� (0)
qε(y)� fy�Cr d Leb(y)

�

� sup
y�Bη� (0)

� fy�Cr + lim
ε�0

�	

Bη(0)\Bη� (0)
qε(y) d Leb(y)

�

sup
y�Bη (0)

� fy�Cr

= sup
y�Bη� (0)

� fy�Cr . (18)
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Since limy�0� fy�Cr = 0, by letting η� � 0 in (18) we can conclude that the left-hand side of (18)
is 0. Recalling that Ty � U for every y � supp qεpη , it follows that supy�supp qεpη�LTy�p,q < �.
Hence

lim
ε�0

�Fε�p,q � lim
ε�0

sup
y�supp qε pη

�LTy�p,q

	
a�1
ε,ηqε(y)pη(y)� fy�Cr d Leb(y) = 0,

which proves (13) in our setting. The comments made in the sentence following (13) apply
here too. Hence the arguments in lemma 5.2 apply to {Aε,η}ε�[0,ε1), and so {Aε,η}ε�[0,ε1) satisfies
(KL) on Bp,q

C with |•| = �•�p�1,q+1.
We will prove that limε�0 Bε,η = 0 in both L(Bp,q) and L(Bp�1,q+1), as this readily implies the

same for L(Bp,q
C ) and L(Bp�1,q+1

C ). Let h � Cr(Td,R), k � p be a non-negative integer, W � Σ,
{vi}k

i=1 � V r(W) with �vi�Cr � 1, and ϕ � Cq+k
0 (W,R) with �ϕ�Cq+k � 1. With sε,η = qε(1 �

a�1
ε,η pη), we have

����

	

W
v1 . . . vk(sε,η 	 Lh)(x) •ϕ(x) dΩ(x)

����

�
	

Td
|sε,η(y)|

����

	

W
v1 . . . vk(τ�yLh)(x) •ϕ(x)dΩ(x)

���� d Leb(y)

�
�

sup
y�Td

�τyL�p,q

�

�h�p,q

	

Td
|sε,η| d Leb(y).

Hence,

�Bε,η�p,q �
�

sup
y�Td

�τyL�p,q

� 	

Td
|sε,η| d Leb(y)

�
�

sup
y�Td

�τyL�p,q

� 	
qε(y)

��1 � a�1
ε,η pη(y)

�� d Leb(y). (19)

Since limε�0 aε,η = 1, using (S3) we have

lim
ε�0

	
qε(y)

��1 � a�1
ε,η pη(y)

�� d Leb(y)

� lim
ε�0

�	
qε(y)(1 � pη(y))d Leb(y) +

	
qε(y)pη

��1 � a�1
ε,η

�� d Leb(y)

�

� lim
ε�0

�	

Td\Bη(0)
qε(y)d Leb(y) +

��1 � a�1
ε,η

��
�

= 0. (20)

Together (15), (19), and (20), imply that limε�0 �Bε,η�p,q = 0. The same argument proves that
limε�0 �Bε,η�p�1,q+1 = 0, and so there exists ε� � (0, ε1) so that supε�(0,ε�) �Bε,η�p�1,q+1 < �.
We have verified the conditions of proposition 2.5, concluding the proof. �

6.1. A class of maps satisfying proposition 6.1, theorem 6.3, and corollary 6.4

Our main result for this section, proposition 6.6, gives conditions for T to have an iterate satis-
fying (15). For instance, we will deduce that proposition 6.6 applies to Anosov maps that are
sufficiently close to hyperbolic linear toral automorphisms.
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In [14, section 3] the usual Euclidean metric onTd is replaced by an equivalent adapted met-
ric. The choice of adapted metric will be crucial to our arguments in this section, so we begin
by reviewing the construction of such metrics, following [5, proposition 5.2.2]. Let |•| denote
the usual Euclidean norm on the tangent space of Td. Let Es(x) and Eu(x) denote the stable and
unstable directions, respectively, of T at x, and let πs

x and πu
x be the projections induced by the

splitting TxT
d = Es(x) � Eu(x). Let ds = dim Es(x) and du = dim Eu(x). Since T is Anosov,

there exists C > 0, λs � (0, 1), and λu > 1 so that
��DxTn|Es(x)

�� � Cλn
s and

��DxT�n|Eu(x)

�� �
Cλ�n

u for every n � N. Recall νu and νs from section 4.1, and that λs < νs < 1 < νu < λu.

Let N be such that max{ λN+1
s

νN+1
s

, νN+1
u

λN+1
u

} < 1/C. For vs � Es(x) and vu � Eu(x) we define

�vs�0 =
N�

k=0

ν�k
s

��DxTkvs
�� , and �vu�0 =

N�

k=0

νk
u

��DxT�kvu
�� .

Note that
���DxT|Es(x)

���
0
< νs and

���DxT�1
��
Eu(x)

���
0
< ν�1

u . For v � TxT
d we define

�v�0 =

�πs

xv�2
0 + �πu

xv�2
0,

and, since �•�0 satisfies the parallelogram law, we may recover a metric •, •�0 via the polarisa-
tion identity. Note that Es(x)�Eu(x) with respect to •, •�0. Because x 
� •, •�0 is not necessarily
smooth (and so Td equipped with •, •�0 would not be a C� Riemannian manifold), for each
sufficiently small ξ > 0 we instead consider a smooth metric •, •�ξ (with corresponding norm
denoted �•�ξ) such that

(M1) supx�Td sup v,w�TxTd

�v�0,�w�0�1

|v,w�ξ � v,w�0| < ξ;

(M2)
���DxT|Es(x)

���
ξ
< νs and

���DxT�1
��
Eu(x)

���
ξ
< ν�1

u ; and

(M3) Es(x) and Eu(x) are ξ-orthogonal: for ws � Es(x) and wu � Eu(x) with �ws�ξ, �wu�ξ �
1 we have |ws,wu�ξ | < ξ.

A metric is called adapted if it satisfies (M2). For sufficiently small ξ, metrics satisfying
(M1)–(M3) can be constructed by approximating •, •�0 (see e.g. [16]).

Let ξ � 0. For x � Td we denote by Γs
x and Γu

x the orthogonal (with respect to •, •�ξ) pro-
jections onto Es(x) and Eu(x), respectively. AlthoughΓs

x clearly depends on ξ, we suppress this
from our notation. Define

Cτ ,ξ = sup
x,y�Td

�Dxτy�ξ and ΘT,ξ = sup
x,y�Td

�Γs
x+yDxτy � (Dxτy)Γs

x�ξ. (21)

Note that both Cτ ,ξ and ΘT,ξ are finite. The key hypothesis for this section’s main result is
that C�1

τ ,0 > ΘT,0. Roughly speaking, this condition ensures that translated leaves never lie in
the unstable direction of T (recall that leaves are approximately parallel to the stable direc-
tions). One way to see this is by computing the quantities Cτ ,0 and ΘT,0 when �•�0 is the usual
Euclidean norm (ignoring the issue of whether the Euclidean norm is adapted). In this case,
Cτ ,0 = 1 and ΘT,0 measures the angle between Es(x + y) and Es(x). If this angle is everywhere
close to 0 then the translate of a leaf will be approximately parallel to the stable direction of T
regardless of the translate.

We will select a specific adapted metric to both streamline our arguments and strengthen
our results; although in doing so we impact the definition of the set of leaves Σ, and hence
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also the spaces Bp,q
C and Bp�1,q+1

C . Our main technical result for this section is the following;
its proof constitutes appendix C.

Proposition 6.6. If

C�1
τ ,0 > ΘT,0, (22)

then there exists N � Z+, an adapted metric •, •�, and a set of leaves Σ̃, inducing spaces B̃p,q
C

and B̃p�1,q+1
C , so that L is quasi-compact on B̃p,q

C , with the same spectral data associated to
eigenvalues outside of the ball of radius max{ν�p

u , νq
s } as when considered as an operator on

Bp,q
C , and so that

sup
y�Td

max
�
�τyLN�p,q, �τyLN�p�1,q+1

�
< �. (23)

We make two comments regarding the applicability of proposition 6.6. Firstly, maps satis-
fying (22) exist as ΘT,0 = 0 whenever T is a linear hyperbolic toral automorphism. Secondly,
the condition (22) is open in Cr+1(Td,Td). To see this, suppose that T satisfies (22), and let •, •�
be the metric one obtains by applying proposition 6.6 to T. The following comments apply to
all T � in a sufficiently small Cr+1-neighbourhood of T: T � is Anosov map, •, •� is an adapted
metric for T �, and the stable and unstable directions for T and T � are everywhere close in the
Grassmannian. It follows that T � also satisfies (22) provided that it is sufficiently close to T in
the Cr+1 topology.

We now give a concrete example of maps satisfying the conditions of proposition 6.6. For
δ � R let Tδ : T2 � T2 be defined by

Tδ(x1, x2) = (2x1 + x2, x1 + x2) + δ(cos(2πx1), sin(4πx2 + 1)).

Note that T0 is Arnold’s ‘cat map’—a linear hyperbolic toral automorphism—and so it sat-
isfies proposition 6.6. Moreover, since δ 
� Tδ is smooth, it follows from the discussion in
the previous paragraph that Tδ is Anosov and satisfies the conditions of proposition 6.6 for
sufficiently small δ. In appendix D we find an explicit range of δ satisfying these conditions,
yielding the following result.

Proposition 6.7. If 0 � δ < 0.0108 then Tδ is an Anosov diffeomorphism and satisfies the
conditions of proposition 6.6.

7. Estimation of the statistical properties of Anosov maps

In this section we implement the numerical schemes described in sections 5 and 6. These are,
respectively:

Fourier approximation of mollified transfer operators. Proposition 5.3 says that if we
convolve the (possibly twisted) transfer operator L� with a locally supported stochastic ker-
nel (parameterised by ε), Fourier approximations (of order n = n(ε)) of this mollified transfer
operator satisfy the (�•�p,q, �•�p�1,q+1) (KL) conditions as a family of operators in ε. That the
same holds for LLeb follows from proposition B.3. The Fourier approximations of LLeb are
numerically accessible and theorem 5.6 and proposition B.3 then guarantees convergence of
the SRB measure (in the �•�p�1,q+1 norm), convergence of the variance of a Cr observable, and
uniform convergence of the rate function for Cr observables, as ε� 0.

Direct Fourier approximation via Fejér kernels. Corollary 6.4 states that if we con-
volve the (possibly twisted) transfer operator L� with a Fejér kernel (parameterised by n),
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this sequence of operators in n satisfy the (�•�p,q, �•�p�1,q+1) (KL) conditions. That the same
holds for LLeb follows from proposition B.4. The Fejér kernels directly arise from Fourier pro-
jections and this second numerical scheme requires only direct Fourier approximation of the
transfer operators LLeb. Theorem 6.3 and proposition B.4 guarantees convergence of the SRB
measure (in the �•�p�1,q+1 norm), convergence of the variance of a Cr observable, and uniform
convergence of the rate function for Cr observables, as n ��.

For the remainder of this section we will only deal with the operatorLLeb, it is twists LLeb(z)
and approximations of both these two operators i.e. LLeb,ε and LLeb,ε(z). To simplify notation
we drop the reference to Leb.

7.1. General setup

We note that Lε(z) arising from both (i) the convolution with a locally supported stochas-
tic kernel qε and (ii) convolution with a Fejér kernel, can be considered as operators on
L2(T2). A numerical approximation Lε(z) of the twisted transfer operator L(z) can be formed
in a number of ways, detailed below, but each of these will be based on Fourier approxi-
mation. This is a natural approach as we have a periodic spatial domain and the map and
observable are smooth. First, we set up the Fourier function basis and L2-orthogonal projec-
tion of the action of Lε on these basis functions. Using the usual L2 inner product  f , g� =�

T2 f •g d Leb, for x � T2 and j � Z2, define a complex Fourier basis fj(x) = e2πij•x , so that
g =

�
j�Z2g, fj� fj :=

�
j�Z2 ĝ(j) fj. To obtain a representation of Lε in this basis, we compute:

L(z)ε,kj := L(z)ε fk, fj� =
	

T2

�	

T2
qε(x � y)L(ezg(y) fk(y)) d Leb(y)

�
fj(x) d Leb(x)

=

	

T2

�	

T2
qε(x � Ty)ezg(y) fk(y) d Leb(y)

�
fj(x) d Leb(x)

=

	

T2

�	

T2
qε(x � Ty) fj(x) d Leb(x)

�
ezg(y) fk(y) d Leb(y)

=

	

T2

�	

T2
qε(x)e�2πij•(x+Ty) d Leb(x)

�
ezg(y) fk(y) d Leb(y)

=

	

T2
qε, fj�e�2πij•(Ty)ezg(y) fk(y) d Leb(y)

= qε, fj� f�j � T•ezg, f�k�

= q̂ε(j)• ̂�
f�j � T•ezg

�
(�k) (24)

Notice that (24) only involves Fourier transforms of trivial objects (e.g. composition of a basis
function with the map, exponential functions, the stochastic kernel, and the basis functions
themselves). To obtain spectral information for Lε(z) : L2 � L2 we may solve the generalised
eigenvalue problem Lε(z)vε(z) = λε(z)vε(z).

7.2. Discrete Fourier transform

To numerically approximate the above Fourier transforms, we first truncate the Fourier modes
so that j � {�n/2 + 1, . . . ,�1, 0, 1, . . . , n/2}2, where n = 2n� for some n� � Z+. Correspond-
ing to this frequency grid is a regular spatial grid on T2 of the same cardinality; we call
these frequency and spatial grids ‘coarse grids’. The L2 inner products are estimated using
MATLAB’s two-dimensional discrete fast Fourier transform (DFT) fft2 on equispaced

6265



Nonlinearity 33 (2020) 6244 H Crimmins and G Froyland

spatial and frequency grids with cardinalities N = 2N� for some integer N� � n�; these grids
will be referred to as ‘fine grids’. The DFT is a collocation process, and by using N � n, we
evaluate our functions on a finer spatial grid and produce more accurate estimates of the (lower)
frequencies in the coarse grid. One may also think of the DFT as a type of interpolation; for
fixed n, as N increases we achieve increasingly accurate estimates of the L2 inner products. The
cardinality n2 of the coarse grid determines the size of the n2 × n2 matrix Lε,n(ε)(z) (if convolv-
ing with stochastic kernels) or Ln(z) (if convolving with Fejér kernels), while the cardinality
N2 of the fine grid determines the computation effort put into estimating the inner products via
the DFT. In our experiments we will use n = 32, 64, 128 and N = 512.

The kernel qε will be either:

(a) A stochastic kernel given by an L1-normalised C� bump function with support restricted
to the disk of radius ε centred at 0. The particular bump function we use in the numerics
is a well-known transformed version of a Gaussian given by qε(x) = (C/ε2)exp(�1/(1�
�x/ε�2) for x � Bε(0), where C is a fixed L1-normalising constant.

(b) The square Fejér kernel of order n. Because of the special form of the square Fejér ker-
nel we have that q̂n(j) = (1 � |j1|/(n/2 + 1))(1 � |j2|/(n/2 + 1)), which may be inserted
directly into (24). Another advantage of the Fejér kernel is that no explicit mollification is
required, with the ‘ε’ slaved to the coarse resolution n.

In our experiments, given a coarse frequency resolution n, we will try to select ε so
that the stochastic kernel ‘matches’ the Fejér kernel. We do this by choosing ε so that
minj�{�n/2+1,...,n/2}2 |q̂ε(j)| � minj�{�n/2+1,...,n/2}2 |q̂n(j)|.

7.3. Numerical results

The specific map T : T2 � on which we carry out our numerics is a small perturbation of a
linear toral automorphism:

T(x1, x2) = (2x1 + x2 + 2δ cos(2πx1), x1 + x2 + δ sin(4πx2 + 1)),

with δ = 0.01. By proposition 6.7 we have that T is Anosov and satisfies the conditions of
proposition 6.6, which is required in order to rigorously estimate the statistical properties of T
using the Fejér kernel as per corollary 6.4. The observable we use when computing the variance
and the rate function is g(x1, x2) = cos(4πx1) + sin(2πx2), displayed in figure 1.

7.3.1. Estimating the SRB measure. Transitive Anosov systems possess a unique
Sinai–Ruelle–Bowen (SRB) measure [35, theorem 1], which is exhibited by trajecto-
ries beginning in a full Lebesgue measure subset of T2. A trajectory of length 1.5 × 105

initialised at a random location is shown in figure 2. To create a numerical approximation
of the SRB measure we compute the leading eigenvector of Ln (the matrix associated with
the Fejér kernel). Figure 3 illustrates the results of using n = 128, N = 512. The left panel
of figure 3 is shaded so that higher ‘density’ is indicated by darker shading. Note that this
compares very well with the density of points in the trajectory shown in figure 2, and that
figure 3 (left) captures many structures more clearly than the trajectory image. The right panel
of figure 3 shows the same image as the left panel, but rotated and with the density plotted
along the vertical axis. The high degree of smoothness of the estimate of the SRB measure
along unstable directions is evident. Reducing n from 128 to n = 64 or n = 32 has little effect
on the image in unstable directions as these slow oscillations are still well-captured by lower
order Fourier modes, but the higher frequency oscillations in stable directions will not be
captured as well and the image will be ‘smoothed’ in the stable directions.
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Figure 1. Graph of the observable used in the variance and rate function calculations.
Left: view from above. Right: view from the side with the fine N × N spatial mesh visible
(N = 512).

Figure 2. A trajectory of length 1.5 × 105 initialised at a random location.

As a non-rigorous comparison, we form an Ulam matrix using a 512 × 512 equipartition
of boxes {B1, . . . , B218} on T2. We compute a row-stochastic matrix P512 as P512,ij = Leb(Bi �
T�1Bj)/Leb(Bi), where the entries P512,ij are estimated by uniformly sampling 1600 points in
each box and counting the fraction of points initialised in Bi that have their image in Bj. The
Ulam estimate of the SRB measure is then obtained as the leading left eigenvector of P512.
The images corresponding to figure 3 are shown in figure 4. In comparison to figure 3 two
things are noticeable. Firstly, figure 4 (left) appears to produce a finer representation of the
SRB measure than figure 3 (left), and secondly, the estimate in figure 4 (right) is rougher in
unstable directions than the estimate in figure 3. Each of these observations is relatively easy
to explain at a superficial level through the different approximation bases used. In terms of
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Figure 3. Approximations of the SRB measure computed as the leading right eigen-
vector of L128 (Fej·er kernel of order 64), using a fine grid cardinality of N = 512 to
evaluate the Fourier transforms. Left: darker regions indicate higher ‘density’. Right: the
same image rotated and represented in three dimensions with the vertical axis indicating
‘density’.

regularity of approximation basis the Ulam method is very low order (piecewise constant)
because it uses a basis of indicator functions on the 512 × 512 grid. On the other hand, the
approximation basis for the Fourier approximation of very high order (analytic). The Ulam
basis is thus very flexible and can adapt well to the roughness of the SRB measure in stable
directions, but has no a priori smoothness in unstable directions. In contrast, the Fourier basis
is less flexible in stable directions, requiring more modes to capture rapid oscillations, but is
extremely efficient at approximating smooth functions and easily captures the smooth variation
in unstable directions. A recent alternative non-rigorous collocation-based method of SRB
measure approximation has been explored in [32] for certain families (Blaschke products) of
analytic Anosov maps. In the case of analytic expanding maps [32], proves that this method
produces the true absolutely continuous invariant measure in the limit of increasing numerical
resolution.

7.3.2. Estimating the variance. To estimate the variance of a centred observable g : T2 �
R we employ the method described in [8, section 4.2]. We use the representation of the
(approximate) variance

σ2
n :=λ(2)

n (0) =
	

T2
g2vn(0) + 2g(Id � Ln(0))�1Ln(0)(gvn(0))d Leb. (25)

The main difference to the calculations in [8] is that here we use Fourier approximation,
whereas [8] used Ulam’s method, which was better suited to the piecewise expanding maps
considered there. The key computational component in (25) is the solution of a single lin-
ear equation to obtain an estimate for (Id � Ln(0))�1Ln(0)(gvn(0)), which is d

dzvn(z) at z = 0.
Because our approximate transfer operator Ln(z) is represented in frequency space, we set up
and solve this linear equation in frequency space, yielding the DFT of d

dzvn(z) at z = 0. This
Fourier transform is then inverted with the inverse DFT to produce the required spatial esti-
mate. Similarly, the DFT of vn(0) is computed as the leading right eigenvector of Ln(0) and
inverted with the inverse DFT to obtain a spatial estimate of vn(0). These two spatial estimates
(analytic functions consisting of a linear combination of Fourier modes) are then evaluated on
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Figure 4. Approximations of the SRB measure computed as the leading left eigenvector
of P512 (Ulam grid of size 512 × 512). Left: darker regions indicate higher ‘density’.
Right: the same image rotated and represented in three dimensions with the vertical axis
indicating ‘density’.

Table 1. Variance estimates from the two Fourier approximation approaches and Ulam’s
method. For the two Fourier approximation methods we use a fine frequency grid
resolution of N = 512 and for Ulam’s method we use 1600 sample points per box.

Coarse grid
resolution n n = 32 n = 64 n = 128 n = 256

Stochastic kernel 0.9359 (ε = 0.0693) 0.9342 (ε = 0.0378) 0.9337 (ε = 0.0210)
Fej·er kernel 0.9447 0.9395 0.9366
Ulam 0.9320 0.9307 0.9348

the fine spatial grid and the integral in (25) is computed as a simple Riemann sum over the
fine spatial grid. The Ulam-based variance estimates are calculated identically to [8]. In table 1
we report variance estimates over a range of coarse grid resolutions to roughly indicate the
dependence of the estimates on grid resolution.

7.3.3. Estimating the rate function. We numerically estimate the rate function rg(s) =
supz�V(sz � log|λε(z)|) for a centred observable g : T2 � R using the Fejér kernel approach.
We create the Fejér kernel estimate Ln(z) of the twisted transfer operator and compute the lead-
ing eigenvalue λn(z) and eigenvector vn(z) of Ln(z). The leading eigenvector vn(z) is converted
from frequency space to a function on T2 by evaluating the linear combination (according to
the entries of vn(z)) of the n associated Fourier modes on a fine N × N spatial grid for N = 512.
For a given s, we are now in a position to find the minimum of �(sz � log|λε(z)|) as a function
of z. We used MATLAB’s fminunc routine (unconstrained function minimisation) with the
default quasi-newton option, which takes around four to five iterates to converge to the mini-
mum within a preset tolerance of 10�6. We asked for the values of rg(s) for s between 0 and
1.8 in steps of 0.1, and initialised the search for the optimal z value using the optimal z from
the previous value of s. The results are shown in figure 5 for coarse grids of size n = 32 and
n = 64, with fine grid collocation and function evalution using N = 512. Note that the range of
g is [�2, 2] (see also figure 1), and that g is already centred with respect to Lebesgue measure
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Figure 5. Estimates of the rate function rg using Fej·er kernels with n = 32, 64 and N =
512.

on the 2-torus. In the rate function computations we centre g according to our estimate of the
SRB measure, but do not expect the range of g to vary significantly. The large values of rg(s)
as s approaches 2 are consistent with this observation.

Acknowledgments

HC is supported by an Australian Government Research Training Program Scholarship and
the UNSW School of Mathematics and Statistics. GF is partially supported by an Aus-
tralian Research Council Discovery Project. The authors thank Andy Hammerlindl for helpful
comments regarding lemma D.3.

Appendix A. Proofs for section 4

In this appendix we prove propositions 4.2 and 4.3, and theorem 4.4.

The proof of proposition 4.2. It is clear that Mg(0) is the identity. For each k � N let
Pk : Cr(X,C) �Cr(X,C) be defined by Pk f = gkf. Multiplication by g is continuous on Bp,q

C
by [14, lemma 3.2] and so Pk � L(Bp,q

C ) for each k � N. Moreover, as �Pk�p,q � �P1�k
p,q, for

each z � C the series
��

k=0 zkPk is absolutely convergent in the �•�p,q operator norm, with
limit Mg(z). Hence z 
� Mg(z) is a well-defined analytic map taking values in L(Bp,q

C ). The
same argument holds when Bp,q

C is replaced with Bp�1,q+1
C , and so z 
� Mg(z) is analytic on

L(Bp�1,q+1
C ) too. In particular, it is compactly �•�p�1,q+1-bounded. �

From the beginning of [14, section 4], for each h � Bp,q and φ � Cq(X,R) we have

����

	
hφdΩ

���� � C�h�p,q�φ�Cq ,

for some C > 0 independent of h and φ. It is straightforward to show that the same inequality
holds for h � Bp,q

C and φ � Cq(X,C) (although with a different C, which is inconsequential).
Hence, the functionalΩ is in (Bp,q

C )	. Let m � Bp,q be a probability measure (i.e. the image of m
under the inclusion map from Bp,q to D�

q(x) is a probability measure) and h � Cr(X,C). Since
Cr(X,R) is dense in Bp,q, there exists {mi}i�Z+ � Cr(X,R) such that mi � m in Bp,q. As Bp,q

is continuously injected into D�
q(x) it follows that mi � m in D�

q(x). Note that ϕ � Cr(X,R)
naturally induces a measure, which we will also denote by ϕ, so that

�
fdϕ =

�
fϕdΩ for each
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Borel measurable function f : X � C. Hence,

Ω(hm) = lim
n��

Ω(hmn) = lim
n��

	
hmndΩ = lim

n��

	
hdmn =

	
hdm. (26)

Proposition A.1. Let g � Cr(X,R), Sn(g) =
�n�1

k=0 g � Tk and m � Bp,q be a probability
measure. Then for each n � N and z � C we have

	
ezSn(g)dm = Ω(L(z)nm).

Proof. For h � Cr(X,C) we haveLh = (h|det T|�1) � T�1. It is straightforward to verify that
for every f1, f2 � Cr(X,C) we haveL( f1 � T• f2) = f1L( f2). By [14, lemma 3.2], multiplication
by f1 is continuous on Bp,q

C . Hence, by passing to the completion we may take f2 � Bp,q
C . Setting

f1 = ezg and f2 = m, and then inductively using this identity, it follows that for each n � N and
z � C we have L(z)nm = Ln

�
ezSn(g)m

�
. Upon integrating, and using (26) and that L preserves

Ω-integrals, we have

Ω(L(z)nm) = Ω
�
Ln

�
ezSn(g)m

��
= Ω

�
ezSn(g)m

�
=

	
ezSn(g)dm.

�
In the setting of proposition 4.3, there is a well-known connection between the condition

that g is not an L2(μ)-coboundary and the map z 
� ρ(L(z)) being strictly convex in a real
neighbourhood of 0.

Lemma A.2. If g � Cr(X,R) is not an L2(μ)-coboundary and satisfies
�

gdμ = 0, then z 
�
ln ρ(L(z)) is strictly convex in a real neighbourhood of 0.

Proof. We will reduce the statement to a well-known result. As z 
� L(z) is analytic, stan-
dard analytic perturbation theory for linear operators implies that L(z) is quasi-compact and
simple in an open complex neighbourhood U of 0. Moreover, L(z) has decomposition L(z) =
λ(z)Π(z) + N(z) where λ(z), Π(z) and N(z) depend analytically on z. Since Ω(Π(0)μ) = 1,
by possibly shrinking U we may assume that Ω(Π(z)μ) �= 0 for any z � U. Hence there
exists a branch of the complex argument arg :C� R that is continuous at Ω(Π(z)μ). By the
quasi-compact decomposition ofL(z) we have limn�� λ(z)�nΩ(Ln(z)μ) = Ω(Π(z)μ) for every
z � U. LetP denote the completion of { f � Cr(X,R) : f � 0} in Bp,q

C . Since g is real valued and
L preservesP � Cr(X,R), it follows that L(z) preservesP for each z � R. It is clear thatμ � P
and that Ω( f ) � 0 for all f � P , and so Ω(Ln(z)μ) � [0,�) for every n � Z+ and z � U. It
follows that arg(λ(z)�n) = arg(λ(z)�nΩ(Ln(z)μ)) � arg(Ω(Π(z)μ)), which is only possible if
λ(z) is real. Thus for z � R � U we have ρ(L(z)) = |λ(z)| = λ(z). As λ(0) = 1, by possibly
shrinking U again we may assume that λ(z) is bounded away from 0 when z ranges over U,
implying that ln ρ(L(z)) is finite for every z � U � R.

Differentiating twice yields

d2

dz2
ln ρ(L(z)) =

d2

dz2
ln λ(z) =

λ��(z)λ(z) � (λ�(z))2

λ(z)2
. (27)

After possibly shrinking U there exists an analytic map z 
� μ(z), defined for z � U, such that
μ(z) is an eigenvector of L(z) for the eigenvalue λ(z). As Ω(μ(0)) = 1, after possibly shrinking
U we may choose each μ(z) so that

�
μ(z)dΩ = 1. By differentiating (λ(z) � L(z))μ(z) = 0,

we have

λ�(z)μ(z) = L�(z)μ(z) � (λ(z) � L(z))μ�(z). (28)
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Note that L�(z) f = L(z)(g f ). Evaluating (28) at z = 0 and integrating with respect to Ω yields

λ�(0) =
	

L�(0)dμ =

	
gdμ = 0.

Evaluating (27) at z = 0, we have d2

dz2 ln ρ(L(z))
���
z=0

= λ��(0). By [15, lemma IV.3]4 we have

λ��(0) = lim
n��

	
S2

n

n
dμ.

Hence λ��(0) � 0 and it suffices to show that if λ��(0) = 0 then g is an L2(μ)-coboundary, as
the contrapositive then implies that z 
� ln ρ(L(z)) is strictly convex in a real neighbourhood
of 0. The proof of this is well-known; see e.g. [29, lemma 6]. �

The proof of proposition 4.3. We consider Yk = g � Tk on the probability space (X, m).
The expectation of Yk with respect to m is

	
g � Tkdm = Ω

�
(g � Tk)m

�
= Ω

�
(Lkm)g

�
.

By our assumptions, L = L(0) is a simple quasi-compact operator on Bp,q
C with ρ(L) = 1. Let

Lk = Π+ Nk be the quasi-compact decomposition of Lk. As μ is T-invariant and ΩL = Ω,
it follows that Π( f ) = Ω( f )μ. Hence, as Nk � 0 and m is a probability measure, we have
Lkm = Ω(m)μ+ Nk � μ in Bp,q

C . Using (26) and the fact that Ω � (Bp,q
C )	 we have

lim
k��

	
g � Tkdm = lim

k��

	
g • (Lkm)dΩ = Ω(μg) =

	
gdμ = 0.

It follows that limn�� E(Sn)/n = 0, where the expectation is taken with respect to m. Let
(E, �•�) = (Bp,q

C , �•�p,q). The map L(•) : C� L(Bp,q
C ) induced by the twist Mg is analytic by

proposition 4.2, and z 
� ln ρ(L(z)) is strictly convex in a real neighbourhood of 0 by lemma
A.2. Hence, in view of proposition A.1 and as Ω � (Bp,q

C )	, hypothesis 3.4 holds. �

The proof of theorem 4.4. For t � [0, 1] let Lt denote the Perron–Frobenius operator
induced by T(t). By [14, theorem 2.3], topological transitivity of T(0) implies that L0 is a
simple quasi-compact operator on Bp,q

C with ρ(L0) = 1. By [14, section 7], there exists some
t � > 0 for which {Lt}t�[0,t�] satisfies (KL) on Bp,q

C with |•| = �•�p�1,q+1. Applying theorem
3.5 to {g � Tk}k�N, which satisfies hypothesis 3.4 by proposition 4.3, we obtain θ > 0 and
ε � (0, T �) so that whenever t � [0, ε] and z � Dθ the operator LtMg(z) is quasi-compact and
simple with leading eigenvalue λt(z). In particular, 1 is a simple eigenvalue of Lt for t � [0, ε]
and so T(t) has a unique SRB measure μt in Bp,q

C . By [12, proposition 2.4, remark 2.5], for
each t � (0, ε) there exists an eigenvector vt of Lt associated to the eigenvalue 1 such that
vt � μ in Bp�1,q+1

C as t � 0. By simplicity of the eigenvalue 1, for sufficiently small t we have
μt =

vt�
vtd�

and so the continuity of f 
�
�

fdΩ on Bp�1,q+1
C implies that μt � μ in Bp�1,q+1

C
too.

Fix t � [0, ε]. Let At =
�

gdμt and gt = g � At. As multiplication by g is continuous on
Bp�1,q+1

C [14, lemma 3.2] and Ω � (Bp�1,q+1
C )	, we have limt�0 At = limt�0 Ω(gμt) = Ω(gμ) =

4 There is a discrepancy in sign between our expressions that is due to the map z 
� L(iz) being used in [15, Chapter
IV], whereas we use the map z 
� L(z).
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�
gdμ = 0. Note that ezAtLtMgt (z) = LtMg(z) for every z � C, and so LtMgt (z) is quasi-

compact exactly when LtMg(z) is. In particular, LtMgt (z) is a simple quasi-compact operator
for every z � Dθ with leading eigenvalue κt(z) = e�zAtλt(z). From the material in this section
and the last, it is routine to verify that {gt � T(t)k}k�N satisfies hypothesis 3.4 on (X, m) with
operator-valued map z 
� LtMgt (z) and Banach space Bp,q

C . Hence, by theorem 3.2 the sequence
{gt � T(t)k}k�N satisfies an LDP on (X, m) with rate function rt : Jt � R defined by

rt(s) = sup
z�(�θ,θ)

(sz � ln |κt(z)|).

Recall from (7) that rt has domain

Jt =

�
d
dz

ln |κt(z) |
����
z=�θ

,
d
dz

ln |κt(z) |
����
z=θ

�
.

As κt(z) = e�zAtλt(z), we therefore have Jt = J0 � At and

rt(s) = sup
z�(�θ,θ)

((s + At)z � ln |λt(z)|).

By theorem 3.5, for each compact U � J0 there is a closed interval V � (�θ, θ) so that the
map s 
� supz�V (sz � ln |λt(z)|) converges uniformly to r0 on U. Since the map z 
� ln |λt(z)|
is convex on (�θ, θ), by the arguments from [8, proposition 3.10] we have

rt(s � At) = sup
z�V

(sz � ln |λt(z)|).

Hence, rt � τ�At � r0 compactly on J0. �

Appendix B. Spectral stability results for LLeb

In this appendix we prove the claims made in remarks 5.7 and 6.5 regarding the relationship
between the operators L�(z) and LLeb(z), and that the spectral stability results for L�(z) from
sections 5 and 6 imply the spectral stability results for LLeb(z).

Proposition B.1. Let R : Bp,q
C � Bp,q

C be defined

Rh = h•
dΩ

d Leb
.

Then R, R�1 � L(Bp,q
C ) � L(Bp�1,q+1

C ) and for every z � C we have

L�(z) = R�1LLeb(z)R. (29)

Hence σ(L�(z)) = σ(LLeb(z)) for every z � C.

Proof. The fact that R � L(Bp,q
C ) � L(Bp�1,q+1

C ) follows from multiplication by Cr(Td,R)
functions being continuous on Bp,q

C and Bp�1,q+1
C [14, lemma 3.2]. Since d Leb

d� � Cr(Td,R), the

same argument implies that R�1 exists and is an element of L(Bp,q
C ) and L(Bp�1,q+1

C ).
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Let f , h � Cr(Td,C). By definition we have

	
L�( f ) • hdΩ =

	
f • (h � T)dΩ =

	 �
f

dΩ
d Leb

�
• h � T d Leb

=

	
LLeb

�
f

dΩ
d Leb

�
•

d Leb
dΩ

• hdΩ

=

	
(R�1LLebR)( f ) • hdΩ.

Hence (R�1LLebR) f = L� f for all f � Cr(Td ,C), and so the same identity holds on Bp,q
C by

density. The conjugacy relation (29) holds for the twisted operators due to the untwisted con-
jugacy relation and the definition of the twist Mg (see proposition 4.2). One has σ(L�(z)) =
σ(LLeb(z)) immediately from (29). �

Proposition B.2. Let {kε}ε�(0,ε0) � L1(Leb) be an L1(Leb)-bounded family. Set L�,ε =
kε 	 L� and LLeb,ε = kε 	 LLeb. Let L�,0 = L� and LLeb,0 = LLeb. Suppose that {L�,ε}ε�[0,ε0)

satisfies (KL) and that one of the following conditions holds.

(K1) For every η > 0 there exists εη such that supp kε � Bη(0) for every ε � (0, εη).
(K2) L� satisfies (15) and for every η > 0 we have limε�0

�
Td\Bη(0) |kε| d Leb = 0

Then {LLeb,ε}ε�[0,ε1) satisfies (KL) for some ε1 � (0, ε0).

Proof. We have

LLeb,ε = RL�,εR
�1 + (LLeb,ε � RL�,εR

�1) :=Aε + Fε.

We will prove that {Aε}ε�[0,ε0) satisfies (KL), and that there exists ε� � (0, ε0) such that
{Fε}ε�[0,ε�) satisfies the conditions required by proposition 2.5, which will then imply that
{LLeb,ε}ε�[0,ε1) satisfies (KL) for some ε1 � (0, ε�).

It is straightforward to confirm that {Aε}ε�[0,ε0) satisfies (KL) by using (KL) for
{L�,ε}ε�[0,ε0), the conjugacy identity (29) and the properties of the map R as given in proposition
B.1. For example (KL1) follows from the estimate

|||Aε � LLeb||| = |||R(L�,ε � L�)R�1||| � �R�
L(Bp�1,q+1

C )
|||L�,ε � L�|||�R�1�L(Bp,q

C ).

The proofs of (KL2) and (KL3) follow from similar arguments.
We will now prove that there exists ε� � [0, ε0) such that {Fε}ε�[0,ε�) satisfies the condi-

tions required by proposition 2.5. For brevity let s = d�
d Leb . Let h � Cr(Td,R), k � p be a

non-negative integer, W � Σ, {vi}k
i=1 � V r(W) with �vi�Cr � 1, and ϕ � Cq+k

0 (W,R) with
�ϕ�Cq+k � 1. Since

FεRh = R(kε 	 (L�h)) � kε 	 (RL�h),

we have

(FεRh)(x) = s(x)
	

kε(y)(L�h)(x � y)d Leb(y) �
	

kε(y)s(x � y)(L�h)(x � y)d Leb(y)

=

	
kε(y)(L�h)(x � y) (s(x) � s(x � y)) d Leb(y).
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Hence, as multiplication by Cr functions is continuous on Bp,q
C there exists a C0 such that

	

W
v1 . . . vk(FεRh)(x) •ϕ(x) dx

=

	
kε(y)

�	

W
v1 . . . vk(τ�yL�h • (s � τ�ys))(x) •ϕ(x) dx

�
d Leb(y)

�
	

|kε(y)| �τ�yL�h • (s � τ�ys)�p,q d Leb(y)

� C0

	
|kε(y)| �τ�yL�h�p,q�s � τ�ys�Cr d Leb(y),

and so

�FεRh�p,q � C0

	
|kε(y)| �τ�yL�h�p,q�s � τ�ys�Cr d Leb(y). (30)

We will bound the right-hand side of (30) differently depending on whether (K1) or (K2) holds.
The case where (K1) holds. Recall from (11) that (τ�yL�h)(x) = (det Dxτ�y)•(L�,Tyh)(x)

where L�,Ty denotes the transfer operator associated to Ty := T + y by duality with respect
to Ω. If we denote x 
� det Dxτ�y by ty then ty(x) = d�

d Leb (x + y) d Leb
d� (x). Since d�

d Leb , d Leb
d� �

Cr(Td ,R) we have

sup
y�Td

�ty�Cr :=C1 < �.

As noted at the beginning of [14, section 7], there is a Cr+1(Td,Td) open neighbourhood U of
T such that [14, lemma 2.2] applies uniformly to every S � U, and so

sup
S�U

�L�,S�p,q :=C2 < �.

Hence, by (K1), there exists an ε� � (0, ε0) such that �L�,Ty�p,q < C2 for every ε � (0, ε�) and
y � supp kε. Since multiplication by Cr functions on Bp,q

C [14, lemma 3.2] is continuous there
exists a C3 independent of h and y such that

�τ�yL�h�p,q = �ty • (L�,Tyh)�p,q � C3�ty�Cr�L�,Ty h�p,q.

Setting C� = C0C1C2C3 and applying these estimates to (30) yields

�FεR�p,q � C�
�	

supp kε

|kε(y)| d Leb(y)

�
sup

y�supp kε

�s � τ�ys�Cr ,

provided that ε � (0, ε�). Since ty � C�(Td,R), by (K1) we have

lim
ε�0

sup
y�supp kε

�s � τ�ys�Cr = 0.

Recalling that {kε}ε�(0,ε0) is L1(Leb)-bounded, we therefore have

lim sup
ε�0

�FεR�p,q � C� lim sup
ε�0

�	

supp kε

|kε(y)| d Leb(y)

�
sup

y�supp kε

�s � τ�ys�Cr = 0.
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As R � L(Bp,q
C ) is invertible it follows that limε�0 Fε = 0 in L(Bp,q

C ). The same argument can be
used to conclude that limε�0 Fε = 0 in L(Bp�1,q+1

C ), and so {Fε}ε�[0,ε�) satisfies the requirements
of proposition 2.5.

The case where (K2) holds. By (15) we have

sup
y�Td

max{�τyL��p,q, �τyL��p�1,q+1} :=C4 < �.

Applying this to (30) yields

�FεR�p,q � C0C4

	
|kε(y)| �s � τ�ys�Cr d Leb(y). (31)

Fix η > 0. By splitting the integral in (31) according to the partition Td = Bη(0) � (Td\Bη(0))
we obtain

	
|kε(y)| �s � τ�ys�Cr d Leb(y) � �kε�L1 sup

y�Bη (0)
�s � τ�ys�Cr

+ sup
y/�Bη (0)

�s � τ�ys�Cr

	

Td\Bη(0)
|kε(y)| d Leb(y).

By (K2) we have

lim sup
ε�0

�FεR�p,q � C0C4

�

sup
ε�(0,ε0)

�kε�L1

� �

sup
y�Bη (0)

�s � τ�ys�Cr

�

, (32)

where the right-hand side is always finite by virtue of the L1(Leb) boundedness of {kε}ε�(0,ε0).
Since s � C�, letting η � 0 in (32) yields limε�0 �FεR�p,q = 0 in L(Bp,q

C ), which implies that
limε�0 �Fε�p,q = 0 by the invertibility of R. As before, the same argument can be used to
conclude that limε�0 Fε = 0 in L(Bp�1,q+1

C ), and so there exists some ε� � (0, ε0) such that
{Fε}ε�[0,ε�) satisfies the requirements of proposition 2.5. �

Using proposition B.2 we may now confirm that our spectral stability results for L� from
sections 5 and 6 also apply to LLeb.

Proposition B.3. If proposition 5.3 applies toL� then it applies toLLeb too. Hence theorem
5.6 holds verbatim if L� is replaced by LLeb.

Proof. Suppose that {qε}ε�(0,ε0) � C�(Td,R) is a family of kernels satisfying (S1) and
(S2). Recall the definition of Qε from the beginning of section 5. By lemma 5.2 there exists
ε1 � (0, ε0) so that {QεL�}ε�[0,ε1) satisfies (KL). Since {qε}ε�(0,ε0) is L1(Leb)-bounded (by
(S1)) and satisfies (S2), by proposition B.2 we may conclude that there exists ε2 � (0, ε1) such
that {QεLLeb}ε�[0,ε2) satisfies (KL) too. The proof of proposition 5.3 holds verbatim with L�
replaced with LLeb, as does that of theorem 5.6. �
Proposition B.4. If proposition 6.1 applies toL� then it applies toLLeb too. Hence theorem
6.3 and corollary 6.4 hold verbatim if L� is replaced by LLeb.

Proof. Let {qε}ε�(0,ε1) � L1(Leb) be a family of stochastic kernels satisfying (S1) and
(S3). Since L� satisfies (15), by proposition 6.1 there exists some ε2 � (0, ε1) such that
{qε 	 L�}ε�[0,ε2) satisfies (KL). The family {qε}ε�(0,ε1) is L1(Leb)-bounded by (S1). This,
together with (S2) and the fact that (15) holds for L�, means that we can apply proposition
B.2 to conclude that there exists ε3 � (0, ε2) such that {qε 	 LLeb}ε�[0,ε3) satisfies (KL) too. The
proofs of theorem 6.3 and corollary 6.4 are the same as before. �
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Appendix C. The proof of proposition 6.6

Throughout this appendix we adopt the notation and setting of section 6.1. The proof of
proposition 6.6 is broken into three parts. In step 1 we begin by constructing the adapted metric
•, •�. In step 2 we define a set of leaves Σ̃, which induce spaces B̃p,q

C and B̃p�1,q+1
C , and prove

the claim in proposition 6.6 regarding the spectral properties of L. Finally, in step 3 we prove
that translated leaves may be covered by the image under TN of finitely many leaves in Σ̃ for
some large N; this result is the core of the proof, and (23) then easily follows from the adaption
of arguments from [14]. Steps 2 and 3 lean heavily on the setting in [14, section 3]. We have
maintained the notation used in [14] whenever possible.

Step 1: Constructing the adapted metric •, •�. For sufficiently small ξ � 0, as T is a Cr+1

diffeomorphism and Td is compact, the quantity Dξ := supx�Td�DxT�1�ξ is finite. Moreover,
as �•�ξ � �•�0 uniformly, it follows that Dξ � D0. As Es(x) and Eu(x) are ξ-orthogonal with
respect to •, •�ξ , one easily verifies that �Γs

xΓ
u
x�ξ = �Γu

xΓ
s
x�ξ < ξ. What is less obvious, but

still true, however, is that

�Γs
xΓ

u
x�ξ = �Γu

xΓ
s
x�ξ = �(Id � Γs

x)(Id � Γu
x)�ξ = �(Id � Γu

x)(Id � Γs
x)�ξ < ξ.

We refer the reader to the proof of theorem 2 in [6] for details. For ξ > 0, x � Td and κ � (0, 1)
we define the stable cone by

Cξ(x,κ) = {u � TxT
d : �(Id � Γs

x)u�ξ � κ�Γs
xu�ξ}.

The following lemma is classical; we reprove it here to emphasise the quantitative estimate
(33).

Lemma C.1. For every J > 0 there exists ξJ > 0 so that for every ξ � (0, ξJ), γ � [0, J) and
x � Td we have

DxT�1Cξ(x, γ) � Cξ
�
T�1x, γνsν

�1
u

�
. (33)

Proof. Let ξ > 0 and suppose that u � Cξ(x, γ). As DxT�1(Es(x)) = Es(T�1x), it follows that

(Id � Γs
T�1(x))DxT�1u = (Id � Γs

T�1(x))DxT�1(Id � Γs
x)u.

Consequently,
���(Id � Γs

T�1(x))DxT�1u
���
ξ
� �DxT�1Γu

x(Id � Γs
x)u�ξ + �DxT�1(Id � Γu

x)(Id � Γs
x)u�ξ.

As �(Id � Γu
x)(Id � Γs

x)�ξ < ξ and u � Cξ(x, γ), it follows that
���(Id � Γs

T�1(x))DxT�1u
���
ξ
�

����DxT�1
��
Eu(x)

���
ξ
+ ξ

���DxT�1
���
ξ

�
�(Id � Γs

x)u�ξ

� γ

����DxT�1
��
Eu(x)

���
ξ
+ ξ

���DxT�1
���
ξ

�
�Γs

xu�ξ.

Similarly,
���Γs

T�1(x)DxT�1u
���
ξ
�

���Γs
T�1(x)DxT�1Γs

xu
���
ξ
�

���Γs
T�1(x)DxT�1(Id � Γu

x)(Id � Γs
x)u

���
ξ

�
���Γs

T�1(x)Γ
u
T�1(x)DxT�1(Id � Γs

x)u
���
ξ

�
���DxT|Es(x)

���1

ξ
� 2ξγ

��DxT�1
��
ξ

�
�Γs

xu�ξ.

6277



Nonlinearity 33 (2020) 6244 H Crimmins and G Froyland

For sufficiently small ξ we have
���DxT�1

��
Eu(x)

���
ξ
< ν�1

u and
��DxT|Es(x)

��
ξ
< νs. Hence, as

supx�Td�DxT�1�ξ = Dξ � D0, there exists ξJ > 0 so that for every ξ � (0, ξJ) we have

�DxT�1
��
Eu(x)

�ξ + ξ�DxT�1�ξ � ν�1
u ,

and, for all γ < J,
��DxT|Es(x)

���1

ξ
� 2ξγ�DxT�1�ξ � ν�1

s .

In view of the above, whenever ξ � (0, ξJ) we therefore have
���(Id � Γs

T�1(x))DxT�1u
���
ξ
� γνsν

�1
u

���Γs
T�1(x)DxT�1u

���
ξ

for every u � Cξ(γ, X ). Thus DxT�1Cξ(x, γ) � Cξ
�
T�1x, γνsν

�1
u

�
for every ξ � (0, ξJ), x � Td

and γ < J, as required. �
We aim to select ξ so that C�1

τ ,ξ > ΘT,ξ , and so that we can apply lemma C.1 for some appro-

priate J. As the adapted metric •, •�ξ uniformly approximates •, •�0, we have limξ�0 C�1
τ ,ξ =

C�1
τ ,0. However, upon examining the definition ofΘT,ξ we observe that the projectionsΓs

x depend
on •, •�ξ , and so the behaviour of ΘT,ξ as ξ � 0 is not clear. We address this now.

Lemma C.2. limξ�0 ΘT,ξ = ΘT,0.

Proof. Let πs
x and πu

x be the projections induced by the direct sum TxT
d = Es(x) � Eu(x).

We have

�Γs
x � πs

x�ξ = �(Γs
x � πs

x)πs
x�ξ + �(Γs

x � πs
x)πu

x�ξ = �(Γs
x � Id)πs

x�ξ + �Γs
xπ

u
x�ξ.

Since Γs
x = Id on Es(x), �(Γs

x � Id)πs
x�ξ = 0. Let v � TxT

d . As Es(x) and Eu(x) are ξ-
orthogonal and Γs

x is an orthogonal projection (both with respect to •, •�ξ), we have

�Γs
xπ

u
xv�ξ =


|Γs

xπ
u
xv, πu

xv�ξ | �

ξ�Γs

xπ
u
xv�ξ�πu

xv�ξ �
�
ξ�πu

x�ξ.

Thus �Γs
x � πs

x�ξ �
�
ξ�πu

x�ξ . Let Pξ = supx�Td�πu
x�ξ . For any x, y � Td the triangle inequal-

ity yields
���Γs

x+yDxτy � (Dxτy)Γs
x�ξ � �πs

x+yDxτy � (Dxτy)πs
x�ξ

��

� �(Γs
x+y � πs

x+y)(Dxτy)�ξ + �(Dxτy)(Γs
x � πs

x)�ξ

� 2
�
ξCτ ,ξPξ.

It follows that
�����ΘT,ξ � sup

x,y�Td
�πs

x+yDxτy � (Dxτy)πs
x�ξ

����� � 2
�
ξCτ ,ξPξ. (34)

As πu
x is independent of ξ, we have Pξ � P0. Since Es(x)�Eu(x) with respect to •, •�0, the

projections πu
x and πs

x are orthogonal with respect to •, •�0. Thus the uniform convergence of
•, •�ξ to •, •�0 implies that

lim
ξ�0

sup
x,y�Td

�πs
x+yDxτy � (Dxτy)πs

x�ξ = sup
x,y�Td

�πs
x+yDxτy � (Dxτy)πs

x�0 = ΘT,0. (35)
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Hence, as Cτ ,ξ � Cτ ,0, by letting ξ � 0 in (34) and applying (35) we have

lim
ξ�0

ΘT,ξ = lim
ξ�0

sup
x,y�Td

�πs
x+yDxτy � (Dxτy)πs

x�ξ = ΘT,0,

as required. �
We now fix, once and for all, the metric that is used in proposition 6.6. As C�1

τ ,0 > ΘT,0,
Cτ ,ξ � Cτ ,0, and, by lemma C.2, ΘT,ξ �ΘT,0, there exists E > 0 so that

inf
ξ�[0,E]

�
C�1
τ ,ξ �ΘT,ξ

�
> 0, and sup

ξ�[0,E]
ΘT,ξ < �. (36)

We apply lemma C.1 with

J = 1 +
supξ�[0,E] ΘT,ξ

infξ�[0,E]

�
C�1
τ ,ξ �ΘT,ξ

� (37)

to produce an adapted metric •, •� := •, •�E , which may replace the metric defined in [14,
section 3] after possibly shrinking E further.

Remark C.3. Until the end of this section we only deal with the metric just constructed, and
so we drop references to ξ and E from our notation.

Step 2: Defining the set of leaves �̃ and the spaces B̃p,q
C and B̃pŠ 1,q+ 1

C . Our task is now
to define a set of leaves Σ̃ and spaces B̃p,q

C and B̃p�1,q+1
C so that the spectral properties of L

on Bp,q
C and B̃p,q

C are identical. It is necessary to understand how leaves are defined; to this
end we reproduce material from the beginning of [14, section 3]. After fixing the metric, in
[14] a small κ > 0 satisfying various properties is fixed; in particular it is required that DxT�1

expands the vectors in C(x,κ) by at least ν�1
s . We now choose a smaller value of κ, as follows.

Let Cτ = Cτ ,E and ΘT = ΘT,E . By (36) and (37), there exists κ� � min{κ, 1/2}, η > 1 such
that

C�1
τ > ΘT(1 + 2κ�η), and

ΘT + (Cτ +ΘT)2κ�η

C�1
τ �ΘT(1 + 2κ�η)

< J. (38)

We redefine the original κ to be κ�, noting that this does not alter the validity of any arguments
in [14] (they only require that κ be sufficiently small, so we are free to make it as small as we
require). Two components of this construction appear, at first glance, arbitrary: the constant η
and the inequalities (38). They appear so that later we may cover translated leaves by the image
under some iterate of T by finitely many leaves (lemma C.5).

As in [14], one may construct finitely many C� charts ψ1, . . . ,ψS, each respectively defined
on (�ri, ri)d � Rd, so that

(B1) D0ψi is an isometry;
(B2) (D0ψi)(Rds × {0}) = Es(ψi(0));
(B3) The Cr+1 norms of ψi and ψ�1

i are bounded by 1 + κ;
(B4) There exists ci � (κ, 2κ) such that the cone

Ci = {u + v � Rd|u � Rds × {0}, v � {0} × Rdu , �v� � ci�u�}

satisfies the following property: for any x � (�ri, ri)d, C(ψi(x)) � (Dxψi)Ci and
(Dψi(x)T�1)(Dxψi)Ci � C(T�1(ψi(x))); and
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(B5) Td is covered by {ψi((�ri/2, ri/2)d)}S
i=1.

We require that the charts satisfy following additional property concerning the distortion of
the cones Ci under Dxψ in terms of the stable cones.

Lemma C.4 There exist charts {ψi}S
i=1 satisfying (B1)–(B5) and so that for any x �

(�ri, ri)d we have

(Dxψi)Ci � C (ψi(x), ηci) ,

where η > 1 is the constant appearing in (38).

Proof. By compactness it is sufficient to construct for each y � Td a chart ψy : (�ry, ry)d �
Td that satisfies all of the given requirements and for which ψy(0) = y. As noted immediately
before the statement of [14, lemma 3.1], for each y � Td one can construct a ψy satisfying
conditions (B1)–(B5) and so that ψy(0) = y. Let Cy denote the corresponding cone and cy �
(κ, 2κ) denote the constant corresponding to ci. Let u + v � Cy so that u � Rds × {0} and v �
{0} × Rdu . Then

�(Id � Γs
y)D0ψy(u + v)� = �(Id � Γs

y)D0ψyv� � �v� � cy�u�,

and

�Γs
yD0ψy(u + v)� = �Γs

yD0ψyu� = �u�.

Together implying that (D0ψi)Cy � C
�
y, cy

�
. Hence, using the compactness of the closed unit

ball in Rd and the uniform continuity of ψy on (�ry, ry)d, x 
� Γs
x on Td and u 
� �u� on both

the tangent space of Td and (�ry, ry)d, we may shrink ry so that DxψiCy � C
�
ψy(x), ηcy

�
for

every x � (�ry, ry)d. Thusψy satisfies all the requirements of the lemma, and we may conclude
using the compactness of Td. �

We are now able to construct our modified set of leaves Σ̃ and spaces B̃p,q
C and B̃p�1,q+1

C ,
and prove the claim in proposition 6.6 regarding the spectral properties of L. Using the metric
•, •� constructed in step 1 of the proof of proposition 6.6, the constant κ defined immediately
following (38), and the charts from lemma C.4, we may define the set of leaves Σ̃ exactly
as in [14, section 3]. Recall that p � Z+ and q > 0 satisfy p + q < r. In exactly the same
way that the set of leaves Σ from [14] induces spaces Bp,q

C and Bp�1,q+1
C (see [14, section 3]),

our set of leaves Σ̃ induces spaces B̃p,q
C and B̃p�1,q+1

C . The proofs of [14, lemma 2.2] and [14,
theorem 2.3] hold verbatim for L on B̃p,q

C . Thus the essential spectral radius of L on B̃p,q
C is

bounded by max{ν�p
u , νq

s }. As per [14, remark 2.5], the spectral data of L associated to eigen-
values outside of the ball of radius max{ν�p

u , νq
s } are the same on Bp,q

C and B̃p,q
C , and in particular

the generalised eigenspaces of all such eigenvalues lie in Bp,q
C � B̃p,q

C .
Step 3: Obtaining the inequality (23). Key to establishing (23) is the following lemma,

which extends the result from [14, lemma 3.3] to include translated leaves. Throughout this
step of the proof we assume the reader is familiar with the definition of the set of leaves Σ̃
from [14, section 3].

Lemma C.5. There exists N, M, C > 0 such that for any W � Σ̃, with associated full
admissible leaf W̃, and y � Td there exists {Ws}m

s=1 � Σ̃ with m < M so that

(a) T�N(W + y) �
�m

s=1 Ws � T�N(W̃ + y).
(b) There are Cr+1 functions {ρs}m

i=1 so that each ρs is compactly supported on Ws,
�

sρs = 1
on T�N(W + y), and �ρs�Cr+1 � C.
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We will now give a brief, non-technical overview of the strategy for proving lemma C.5.
Most of the proof is dedicated to finding leaves Ws which verify the containment

T�N(W + y) �
m�

s=1

Ws � T�N(W̃ + y).

Let us consider the case where y = 0, which is the subject of [14, lemma 3.3]. The idea in
this case is to use the expansion and regularisation of T�1 in the stable direction to prove that
T�1(W̃) is locally ‘leaf-like’. One then picks certain subsets of T�1(W̃), and proves they are
leaves that cover T�1(W). The main issue resulting from translation by a non-zero y is the
possibility that the translated leaf will not be ‘leaf-like’. Specifically, while all leaves in Σ̃ lie
approximately parallel to the stable manifold, the translate of a leaf may well lie very near an
unstable manifold. Our main hypothesis, the inequality (21), will imply that translated leaves
do not lie too close to the unstable manifold, which allows for the aforementioned distortion
to be corrected using the regularisation of T�n for some large n.

We require some preliminary lemmas before proving lemma C.5. The following gives an
estimate of the distortion that stable cones experience under translation, and is where the
hypothesis that CτΘT < 1 is crucial.

Lemma C.6. If γ > 0 satisfies C�1
τ > ΘT (1 + γ) then for each x, y � Td we have

(Dxτy)C(x, γ) � C
�

x + y,
Cτ γ +ΘT(1 + γ)
C�1
τ �ΘT(1 + γ)

�
.

Proof. Suppose that u � C(x, γ). We have

�(Id � Γs
x+y)(Dxτy)u� � �(Id � Γs

x+y)(Dxτy)Γs
xu�+ �(Id � Γs

x+y)(Dxτy)(Id � Γs
x)u�.

(39)

We estimate the first term on the right-hand side of (39). By the triangle inequality we have

�(Id � Γs
x+y)(Dxτy)Γs

xu� ��(Id � Γs
x+y)Γs

x+y(Dxτy)u�

+ �(Id � Γs
x+y)(Γs

x+yDxτy � DxτyΓ
s
x)u�.

The first term on the right-hand side is 0, whereas the second term may be estimated using the
definition of ΘT (see (21)), yielding

�(Id � Γs
x+y)(Dxτy)Γs

xu� � ΘT�u�.

As u � C(x, γ), we have

�(Id � Γs
x+y)(Dxτy)Γs

xu� � ΘT (1 + γ)�Γs
xu�. (40)

We turn to estimating the second term on the right-hand side of (39). Using the definition of
Cτ and as u � C(x, γ), we have

�(Id � Γs
x+y)Dxτy(Id � Γs

x)u� � �Dxτy��(Id � Γs
x)u� � Cτ γ�Γs

xu�. (41)

Applying (40) and (41) to (39) yields

�(Id � Γs
x+y)(Dxτy)u� � (ΘT (1 + γ) + Cτ γ) �Γs

xu�. (42)
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Alternatively, the reverse triangle inequality yields

�Γs
x+yDxτyu� � �DxτyΓ

s
xu� � �(Γs

x+yDxτy � DxτyΓ
s
x)u�

Using a similar process as in the estimation of (42), we obtain

�Γs
x+y(Dxτy)u� � �DxτyΓ

s
xu� �ΘT�u� � (C�1

τ �ΘT(1 + γ))�Γs
xu�. (43)

By our assumptions C�1
τ > ΘT (1 + γ), and so we may combine (42) and (43) to obtain

�(Id � Γs
x+y)(Dxτy)u� � Cτ γ +ΘT(1 + γ)

C�1
τ �ΘT(1 + γ)

�Γs
x+yDxτyu�,

as required. �
In the following lemma we show that the distortion of the stable cones experience under

translation may be corrected by applying T�n for n large.

Lemma C.7. Recall the cones Ci from (B4). There exists N1 > 0 such that for every x, y � Td,
where ψ�1

i (x) � (�ri, ri)d, we have

(Dx+yT�N1 )(Dxτy)(Dψ�1
i (x)ψi)Ci � C

�
T�N1 (x + y),κ

�
.

Moreover, if ψ�1
j (T�N1 (x + y)) � (�r j, r j)d then

(DT�N1 (x+y)ψ
�1
j )(Dx+yT

�N1 )(Dxτy)(Dψ�1
i (x)ψi)Ci � C j.

Proof. Recall from (B4) that ci � 2κ. Lemma C.4 implies that (Dψ�1
i (x)ψi)Ci � C (x, 2ηκ).

By (38) we have C�1
τ > ΘT(1 + 2ηκ), and so lemma C.6 yields

(Dxτy)(Dψ�1
i (x)ψi)Ci � C

�
x + y,

ΘT + (Cτ +ΘT)2κη
C�1
τ �ΘT �ΘT2κη

�
.

Let N1 � Z+ be large enough so that

νN1
s ν�N1

u
ΘT + (Cτ +ΘT )2κη
C�1
τ �ΘT �ΘT2κη

� κ.

By the definition of the adapted metric •, •� from step 1 of the proof of proposition 6.6, the
second inequality in (38), and lemma C.1, it follows that

(Dx+yT�N1 )(Dxτy)(Dψ�1
i (x)ψi)Ci � C

�
T�N1 (x + y),κ

�
.

Since all our estimates are uniform in x and y we obtain the first claim. The second claim
follows from (B4). �

Recall that T�1 is expansive along leaves in Σ̃, since all leaves are approximately parallel
to the stable direction of T. In the proof of lemma C.5 we will require that a version of this
property holds for translated leaves as well. Up until now we have considered how translation
affects the stable cones, and how applying T�1 corrects for any distortion in the cones. In the
following lemma we apply the same idea to show that T�n is expansive along translated leaves
provided that n is sufficiently large.

Lemma C.8. Let H = infx�Td�DxT� and N1 be from lemma C.7. If n > N1 and
ν�n+N1

s H�N1 > 1 then for any W � Σ̃ and y � Td the map T�n expands distances on W̃ + y
by at least ν�n+N1

s H�N1 .
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Proof. Let ψi be a chart whose image contains W̃ and for which the tangent space of ψ�1
i (W̃)

is contained in Ci. Suppose a, b � W̃ + y and that γ : [0, 1] � T�n(W̃ + y) is a distance mini-
mizing geodesic from T�n(a) to T�n(b). Define γn := Tn � γ and note that γn is a differentiable
curve from a to b lying in W̃ + y. For n > N1 we have

dT�n(�W+y)(T
�n(a), T�n(b)) =

	 1

0
�Dtγ�dt

=

	 1

0
�(D(T�N1�γn)(t)T

�n+N1 )(Dγn(t)T
�N1 )(Dtγn)� dt,

(44)

where N1 is the constant from lemma C.7. Since the image of γn is a closed sub-manifold of
W̃ + y and the tangent space of W̃ at w is contained in (Dψ�1(w)ψ)Ci, the image of Dtγn is con-
tained in (Dγn(t)�yτy)(D(ψ�1

i �τ�y�γn)(t)ψi)Ci. Thus, by lemma C.7 we have (Dγn(t)T�N1 )(Dtγn) �
C(T�N1 (γn(t)),κ). As DT�n expands vectors in stable cones by at least ν�n

s we may bound (44)
as follows

dT�n(�W+y)(T
�n(a), T�n(b)) � ν�n+N1

s

	 1

0
�(Dγn(t)T

�N1 )(Dtγn)�dt

� ν�n+N1
s H�N1

	 1

0
�Dtγn�dt � ν�n+N1

s H�N1d�W+y(a, b).

Hence T�n expands distances in W̃ + y by a factor of at least ν�n+N1
s H�N1 provided that n > N1

and ν�n+N1
s H�N1 > 1. �

The following lemma quantifies the regularisation that leaves experience under T�1, and is
a strengthening of [14, lemma 3.1]. Whereas the previous results were concerned with the
regularisation of the first derivative of the leaves (via the contraction of stable cones), the
forthcoming result concerns the regularisation of the higher derivatives of leaves.

Lemma C.9. For L > 0 and i = 1, . . . , S let Gi(L) be the set defined immediately before
[14, lemma 3.1] , and let

R(L) := inf{L� : (ψ�1
j � T�1 � ψi)(W) � G j(L

�) for every W � Gi(L) and i, j = 1, . . . , S}.

For every K sufficiently large the following holds: after possibly refining the charts {ψi}S
i=1

from lemma C.4, for each L > 0 there exists N(L) � Z+ so that for each n � N(L) we have
Rn(L) � K.

Proof. The finiteness of R(L) and the fact that R(L) < L for L sufficiently large follow from
[14, lemma 3.1]. Our more general claim is a classical consequence of the uniform hyperbol-
icity of T and the regularisation of the associated graph transform, so we will only sketch the
ingredients of the proof.

Suppose that W � Gi(L) is the graph of χ : B(x, Aδ) � (�ri, ri)du . As outlined at the begin-
ning of [20, sections 6.4.b], using the exponential map, [20, lemma 6.2.7] and after possibly
refining the set of charts {ψi}S

i=1 so that each ri is sufficiently small, one may apply the argu-
ments from [20, theorem 6.2.8] (refer to steps 3 and 4 of the proof of [20, theorem 6.2.8] for
context, and to step 5 for the relevant argument) to conclude that (ψ�1

j � T�1 � ψi)(W) is the
graph of some map χ� : U � (�r j, r j)ds � (�r j, r j)du . Due to the uniform convergence of the
graph transform as outlined in step 5 of the proof of [20, theorem 6.2.8], there exists some
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L� < L so that �χ��Cr+1 � L� for every such χ provided that L is sufficiently large (i.e. bigger
than K). Hence R(L) exists and satisfies R(L) < L for L large enough. Further examining the
proof of [20, theorem 6.2.8] yields the stronger claim that for sufficiently large K we have

sup
L�K

R(L)
L

< 1,

which immediately yields the required claim. �

Before we prove lemma C.5 we recall a quantitative version of the inverse function theorem.

Lemma C.10 ([25] , XIV section 1 lemma 1.3]). Let E be a Banach space, U � E be open,
and f � C1(U, E). Assume f(0) = 0 and f �(0) = Id. Let r � 0 and assume that Br(0) � U. Let
s � (0, 1), and assume that

� f �(z) � f �(x)� � s

for every z, x � Br(0). If y � E and �y� � (1 � s)r, then there exists a unique x � Br(0) such
that f(x) = y.

The proof of lemma C.5. Let A be the constant appearing in [14, equation (3.1)],
and let δ be the constant defined immediately afterwards. Let W � Σ̃. Denote by W̃ the
associated full admissible leaf, and by χ : B(x, Aδ) � (�2ri/3, 2ri/3)du the map defining
W̃ i.e. W̃ = ψi � (Id,χ)(B(x, Aδ)). Fix z � B(x, δ) and note that B(z, (A � 1)δ) � B(x, Aδ).
For any n � Z+ and y � Td let �(n, y) be an index for which T�n(ψi(z,χ(z)) + y) �
ψ�(n,y)

�
(�r�(n,y)/2, r�(n,y)/2)d

�
(recall (B5)). Let πs : Rd � Rds be the projection onto the first ds

components, and πu : Rd � Rdu the projection onto the last du components. Note that (ψ�1
�(N,y) �

T�N � τy � ψi � (Id,χ))(B(x, Aδ)) is the union of finitely many disjoint, path-connected subsets;
let QN � B(x, Aδ) denote the pre-image under ψ�1

�(N,y) � T�N � τy � ψi � (Id,χ) of the particu-

lar subset containing (ψ�1
�(N,y) � T�N � τy � ψi � (Id,χ))(z). Define FN :=ψ�1

�(N,y) � T�N � τy � ψi �
(Id,χ)|QN

. We will show that for sufficiently large N one can use FN to construct an admissible

leaf Wz so that ψi(z) � Tn(Wz) and Tn(Wz) � W̃ + y.
Step I: The invertibility of � s �FN in a neighbourhood of (� s �FN)(z). Let N1 be the

constant from lemma C.7 and recall H = infx�Td�DxT� from lemma C.8. As remarked in the
proof of [14, lemma 3.3] both ψ�1

i and ψ�(N,y) are (1 + κ)-Lipschitz. Let N2 > N1 be such that
ν�n+N1

s H�N1 > 1 whenever n > N2. By lemma C.8, if n > N2 then T�n expands distances on
W̃ + y by at least ν�n+N1

s H�N1 . It is clear that τ�1
y is Cτ -Lipschitz by the definition of Cτ . It is

clear that d((Id,χ)(a), (Id,χ)(b)) � d(a, b) for every a, b � B(z, Aδ). Using the above estimates
to bound the Lipschitz constant of F�1

N for N > N2 we obtain

d(FN(a), FN(b)) � ν�N+N1
s

�
HN1Cτ (1 + κ)2

��1 �a, b � QN.

As in [14, lemma 3.3] we have |πs(v)| � (1 + c2
�(N,y))

�1/2 |v| whenever v � C�(N,y). Since
supici < 2κ and, for N > N1, the tangent space of FN is contained in C�(N,y), for every N > N2

we have

d((πs � FN)(a), (πs � FN)(b)) � ν�N+N1
s

HN1Cτ (1 + κ)2
�

1 + 4κ2
, (45)
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provided that a, b are sufficiently close. Since νs < 1 there exists N3 � N2 so that for each
N � N3 the map πs � FN locally expands distances by at least

ν�N+N1
s

HN1Cτ (1 + κ)2
�

1 + 4κ2
>

A
A � 1

,

from which it follows that Dw(πs � FN)�1 exists for every (πs � FN)(w) � QN and satisfies

�Dw(πs � FN)�1� � νN�N1
s (HN1Cτ (1 + κ)2

�
1 + 4κ2) <

A � 1
A

. (46)

We will now obtain a lower bound on the size of QN. Note that (Id,χ) is (
�

1 + κ2)-
Lipschitz due to the tangent space of χ being a subset of Ci. Let P = supx�Td�DxT�1�. From
these estimates, as well as those in the previous paragraph, we may conclude that FN is
(PNCτ (1 + κ)2

�
1 + κ2)-Lipschitz. Let

LN := min

�
(A � 1)δ, (PNCτ (1 + κ)2

�
1 + κ2)�1min

j
r j/2

�
.

We will prove that B(z, LN) � QN. If w � (�ri, ri)ds � B(z, LN) then w � B(x, Aδ) i.e. w is in
the domain of χ. Moreover,

d((T�N � τy � ψi � (Id,χ))(w), (T�N � τy � ψi � (Id,χ))(z))

� PNCτ (1 + κ)
�

1 + κ2�w � z�. (47)

Recall that FN(z) � (�r�(N,y)/2, r�(N,y)/2)d and so ψ�(N,y) is defined on B
�
FN(z), min j

r j
2

�
. Since

ψ�(N,y) is (1 + κ)-Lipschitz and a bijection (onto its range), we have

ψ�(N,y)

�
B

�
FN(z), min

j

r j

2

��
� B

�
(T�N � τy � ψi � (Id,χ))(z), (1+ κ)�1min

j

r j

2

�
.

(48)

From (47) and (48) we deduce that if w � B(z, LN) then FN(w) is defined and in
(�r�(N,y), r�(N,y))ds . Moreover, Fn(B(z, LN)) is path-connected, being the image of a path-
connected set under a continuous function, and so B(z, LN) � QN. Let SN : B(0, LN) � Rds be
defined by

SN(w) = (Dz(πs � FN))�1 • ((πs � FN)(w + z) � (πs � FN)(z)) .

Our goal is to apply lemma C.10 to SN, and then deduce the existence of (πs � FN)�1 on some
neighbourhood of (πs � FN)(z) that is not too small, but this will take some work. For any
a, b � B(0, LN) we have

�DaSN � DbSN� � �(Dz(πs � FN))�1��Da+z(πs � FN) � Db+z(πs � FN)�

� �(Dz(πs � FN))�1��Da+zFN � Db+zFN�

� �a � b� sup
w�QN

�D2
wFN� := �a � b�JN, (49)
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where we have used (46) and the fact that w 
� Dwπ
s is constant and a contraction. Note that

1 �
�

1 � 8AδJN3�Dz(πs � FN3 )�1�
4JN3

=
2Aδ�Dz(πs � FN3 )�1�

1 +
�

1 � 8AδJN3�Dz(πs � FN3 )�1�
.

(50)

In the definition of Σ̃ we may assume that δ is as small as we like. Thus, in view of (46) and
(50), by choosing δ sufficiently small we may guarantee that

0 <
1 �

�
1 � 8AδJN3�Dz(πs � FN3 )�1�

4JN3

< LN3 . (51)

If (51) holds then there exists s � (0, LN3) so that

(1 � 2JN3s)s � Aδ�Dz(πs � FN3 )�1�. (52)

To summarise, we have proven the following

(a) SN3 is well-defined on B(0, s) as s < LN3 ;
(b) SN3(0) = 0 and SN

� (0) = Id; and
(c) By (49) we have �DaSN3 � DbSN3� � 2sJN3 for every a, b � B(0, s).

Thus we may apply lemma C.10 to SN3 on B(0, s) to conclude the existence of an inverse
S�1

N3
that is defined on B(0, (1 � 2JN3s)s). Using the definition of SN3 and (52) we recover the

existence of an inverse (πs � FN3 )�1 on B((πs � FN3 )(z), Aδ).
Step II: The definition and properties of leaves covering TŠ N(W̃+ y). We may define a

map χ0 : B((πs � FN3 )(z), Aδ) � Rdu by

χ0 = πu � FN3 � (πs � FN3 )�1.

Note that the graph of χ0 is a subset of FN3 (B(z, s)) by construction. Since the tangent space of
FN3 is contained in C�(N3,y) it follows that �Dχ0� � c�(N3,y). Hence, forw � B((πs � FN3 )(z), Aδ),
we have

�χ0((πs � FN3 )(z)) � χ0(w)� � c�(N3,y)Aδ. (53)

Recall from the line before (38) that κ < 1/2, and from (B4) that c�(N3,y) < 2κ. Thus, as Aδ <
minjrj/6 (see the sentence following [14, equation (3.1)]), from (53) we have

�χ0((πs � FN3 )(z)) � χ0(w)� < min
j

r j/6.

Since (πs � FN3 )(z) � (�r�(N3,y))/2, r�(N3,y))/2)ds , it follows that χ0(w) �
(�2r�(N3,y)/3, 2r�(N3,y)/3)du. Thus the image of χ0 is a subset of (�2r�(N3,y)/3, 2r�(N3,y)/3)du .
Since the Cr+1 norm of FN3 may be bounded independently of y � Td, z � B(x, δ) and W � Σ̃,
by the inverse function theorem there exists some absolute Y so that for any χ0 produced
by the construction just carried out we have �χ0�Cr+1 � Y. Thus the graph of χ0 belongs to
G�(N3,y)(Y) (recall the definition of the sets Gi(K) from [14, section 3]).

The issue at this stage is that �χ0�Cr+1 may not be bounded by the constant K set in [14,
lemma 3.1] and so may not define a leaf in Σ̃. Instead, we show that χ0 may be covered
by the image of higher-regularity leaves under some iterate of T. We note that the following
construction is very similar to the one in the proof of [14, lemma 3.3].
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For each j � Z+ we define χj inductively as follows, starting with j = 1. As the graph of
χj�1 is in G�(N3+ j�1,y)(R j�1(Y)), by lemma C.9 the image of ψ�1

�(N3+ j,y) � T�1 � ψ�(N3+ j�1,y) �
(Id,χ j�1) is in G�(N3+ j,y)(R j(Y)) and is therefore the graph of a map χj

� which contains
ψ�1
�(N3+ j,y) � T�(N3+ j) � τy � ψi � (z,χ(z)). Using the expansivity of T�1 as in [14, lemma 3.3],

one deduces that the domain of χj
� contains the set

B(ψ�1
�(N3+ j,y) � T�(N3+ j) � τy � ψi � (z,χ(z)), Aδ). (54)

We define χj to be the restriction of χj
� to (54). By lemma C.9 we have χN4 � G�(N3+N4,y)(K),

where N4 denotes the constant N(Y) given by lemma C.9 and K is the constant from [14,
lemma 3.1]. Thus the image of

B(ψ�1
�(N3+N4,y) � T�(N3+N4) � τy � ψi � (z,χ(z)), δ)

under ψ�(N3+N4,y) � (Id,χN4 ) is a leaf in Σ̃.
Step III: Concluding. We may apply this construction to any z � B(x, δ) to produce a leaf

Wz � Σ̃ such that TN3+N4 (Wz) � W̃ + y. Moreover, the constants N3 and N4 are independent
of y � Td , z � B(x, δ) and W � Σ̃. Set N = N3 + N4. By varying z we observe that the set of
such leaves covers T�N(W + y). As in the end of [14, lemma 3.3], the claim that the number
of leaves required to cover T�N(W + y) may be bounded independently of W and y follows
from [17, theorem 1.4.10], as too does the existence of partitions of unity satisfying all of the
required properties. Hence we have verified all the conclusions of lemma C.5. �

By using lemma C.5 and adapting arguments from [14, section 6] we may now complete the
proof of proposition 6.6 by proving (23). Let N be the constant from lemma C.5. We will show
that �τyLN�p,q can be bounded independently of y. The argument for bounding �τyLN�p�1,q+1

is identical. Moreover, we will only derive the inequality (23) for the spaces B̃p,q and B̃p�1,q+1,
since it is straightforward to then derive the corresponding inequality for their complexifi-
cations. We begin by bounding �τyLN��0,q. Let h � Cr(Td,R), W � Σ̃, ϕ � Cq

0 (W,R) satisfy
�ϕ�Cq � 1, and y � Td. Let JWτ�y denote the Jacobian of τ�y : W + y � W. Then

	

W
τyLNh •ϕdΩ =

	

W+y
LNh •ϕ � τ�y • JWτ�ydΩ. (55)

Recall that LNh = (h
��det DTN

���1
) � T�N and let JW+yTN denote the Jacobian of TN : T�N(W +

y) � W + y. Let {Ws} j
s=1, {ρs} j

s=1 satisfy the conclusion of lemma C.5. By changing coordi-
nates and applying lemma C.5 to (55) we obtain

	

W+y
LNh •ϕ � τ�y • JWτ�y dΩ

=

	

T�N (W+y)
h •

��det DTN
���1 • (ϕ � τ�y � TN) • (JWτ�y) � TN • JW+yT

N dΩ

=

j�

s=1

	

Ws

h •
��det DTN

���1 • (ϕ � τ�y � TN ) • (JWτ�y) � TN • ρs • JW+yT
NdΩ. (56)

By the definition of �•�0,q the final expression in (56) is bounded above by

�h�0,q

j�

s=1

���
��det DTN

���1 • (ϕ � τ�y � TN) • (JWτ�y) � TN • ρs • JW+yT
N
���
Cq(Ws)

.
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Recall that q � r � 1. Since T is a Cr diffeomorphism and Td is compact, it follows that the
Cq(Ws) norms of JW+yTN and

��det DTN
���1

are bounded independently of W and y. Using con-
tinuity and compactness, we observe that supx,y�Td�Dk

xτy� is finite for every positive integer
k. Thus the Cq(Ws) norm of ϕ � τ�y � TN is bounded independently of y and ϕ (provided
�ϕ�Cq(Ws) � 1). Similarly, it is clear that the Cq(Ws) norm of (JWτ�y) � TN is bounded inde-
pendently of W and y. Recall from lemma C.5 that S and Cq norms of each ρs are both bounded
independently of W and y. Hence, as �•�Cq(Ws) is sub-multiplicative, there exists some C0,q > 0
such that

j�

s=1

���
��det DTN

���1 • (ϕ � τ�y � TN ) • ρs • JW+yTN
���
Cq(Ws)

� C0,q

for every choice of W, y and ϕ with �ϕ�Cq � 1. Thus, by taking supremums of the terms in
(55) we have

�τyLNh��0,q � C0,q�h�0,q. (57)

We turn to bounding �τyLNh��k,q+k for 0 < k � p. Let h, W and y be as before. Suppose that

ϕ � Cq+k
0 (W,R) satisfies �ϕ�Cq+k � 1 and that {vi}k

i=1 � V r(W) is such that �vi�Cr � 1. Then

	

W
(v1 . . . vk)(τyLNh) •ϕdΩ =

	

W
τy(ṽ1,y . . . ṽ1,kLNh) •ϕdΩ,

where ṽi,y(x) := (Dx�yτ y)vi(x � y). With JWτ�y, {Ws} j
s=1 and {ρs} j

s=1 as before we have
	

W
τy(ṽ1,y . . . ṽ1,kLNh) •ϕdΩ =

	

W+y
(ṽ1,y . . . ṽ1,kLNh) •ϕ � τ�y • JWτ�ydΩ

=

j�

s=1

	

TN (Ws)
(̃v1,y . . . ṽ1,kLNh) •ϕ � τ�y • ρs � T�N • JWτ�ydΩ.

(58)

Since the Cq+k norms of ϕ � τ�y and JWτ�y are bounded independently of ϕ, y and W, we may
replaceϕ � τ�y • JWτ�y by some φ � Cq+k

0 (W,R) with Cq+k norm bounded independently ofϕ,
y and W. Additionally, the Cr norm of each ṽi,y may be bounded independently of y and W due
to the supx,y�Td�D�

xτy� being finite for each positive integer �. Upon replacing ϕ � τ�y • JWτ�y

with φ, the expression on the right-hand side of (58) is exactly in the form of [14, (6.4)]. Using
the arguments from [14, lemma 6.3], one then obtains a bound of the form

����

	

W
(v1 . . . vk)(τyLNh) •ϕdΩ

���� � Cp,q�h�p,q + Cp�1,q+1�h�p�1,q+1,

for some Cp,q, Cp�1,q+1 > 0 that are independent of h, W, k, y, ϕ and each vi. By the definition
of �•��k,q+k, and as �•�p,q dominates �•�p�1,q+1, we therefore have

�τyLNh��k,q+k � (Cp,q + Cp�1,q+1)�h�p,q. (59)

The required bound is obtained by considering (57), (59) and the definition of �•�p,q. Thus we
have established (23), which completes the proof of proposition 6.6.
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Appendix D. Properties of the perturbed cat map

In this appendix we consider the maps Tδ : T2 � T2, δ � R, defined by

Tδ(x1, x2) = (2x1 + x2, x1 + x2) + δ(cos(2πx1), sin(4πx2 + 1)),

and prove the claim made in proposition 6.7 that for 0 � δ < 0.0108 the map Tδ is an Anosov
diffeomorphim and satisfies the conditions of proposition 6.6. The proof is broken up into
lemmas D.1, D.3 and D.6.

Throughout this section we denote the Euclidean norm on R2 (and the associated operator
norm) by |•|, and the usual Euclidean inner product by •, •�. We begin by proving that Tδ is a
diffeomorphism for sufficiently small δ by using a quantitative version of the inverse function
theorem (lemma C.10).

Lemma D.1. If δ � [0, 0.0108) then Tδ is a diffeomorphism.

Proof. We have

D(x1,x2)Tδ =

�
2 � 2πδ sin(2πx1) 1

1 1 + 4πδ cos(4πx2 + 1)

�
,

and

det D(x1,x2)Tδ = 1 + 8πδ cos(4πx2 + 1) � 2πδ sin(2πx1) � 8π2δ2 sin(2πx1) cos(4πx2 + 1).

(60)

In particular, D(0,0)Tδ is invertible if |δ| < 1/(8π). Denote by T̄δ : R2 � R2 the lifting of Tδ .
For z � R let�z denote the equivalence class containing z in T = R/Z. Define Rδ : R2 � R2 by

Rδ(y1, y2) := (D(0,0)Tδ)�1
�
T̄δ(y1, y2) � T̄δ(0, 0)

�
.

Note that Rδ(0, 0) = 0 and D(0,0)Rδ = Id. We will estimate

|D(y1,y2)Rδ � D(w1,w2)Rδ| =
��(D(0,0)Tδ)�1

�
D( �y1, �y2)Tδ � D(�w1,�w2)Tδ

��� .

We clearly have
��D( �y1, �y2)Tδ � D(�w1,�w2)Tδ

�� � 8π |δ| . (61)

Use the fact that the Frobenius norm dominates the Euclidean operator norm, we have

��D(0,0)T
�1
δ

�� =
|D(0,0)Tδ|

|det D(0,0)Tδ|
�

�
6 + (1 + 4πδ cos(1))2

|det D(0,0)Tδ|
. (62)

Thus, by (60)–(62),

|D(y1,y2)Rδ � D(w1,w2)Rδ| �
8π |δ|

�
6 + (1 + 4πδ cos(1))2

1 � 8πδ
:= s.

If |δ| < 0.0108 then s < 1. Then Rδ verifies the conditions of Lemma C.10 and has an inverse
Rδ : B(0, (1 � s)r) � R2, where r > 0. Since there is no dependence on r in the above proce-
dure, we may extend R�1

δ to R2. Thus T̄δ is invertible, and so Tδ is invertible too. It is standard
that T�1

δ and Tδ have the same smoothness. �
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Let x � T2. The eigenvalues of DxT0 are λ = 3�
�

5
2 < 1 and λ�1 = 3+

�
5

2 > 1. Let �Es(x)

be the span of
�

1, �
�

5�1
2

�
and �Eu(x) be the span of

�
1,

�
5�1
2

�
. Note that �Es(x) and �Eu(x)

are the eigenspaces of λ and λ�1, respectively. It is trivial that the spaces �Eu(x) and �Es(x)
depend continuously on x, and that �Eu(x) � �Es(x) = TxT

2 for every x � T2. Let Πu,Πs : R2 �
R2 denote the orthogonal projections onto �Eu(x) and �Es(x), respectively. Since T0 is symmetric,
�Eu(x)� �Es(x) and so Id �Πs = Πu. For α > 0 define

Ku
α(x) = {v � TxT

2 : |Πsv| � α |Πuv|}, and Ks
α(x) = {v � TxT

2 : |Πuv| � α |Πsv|}.

To prove that Tδ is an Anosov diffeomorphism it remains to prove that T2 is a hyperbolic set
for Tδ . We do this by verifying the conditions of the following result, which we have adapted
to our setting for simplicity.

Proposition D.2 ([5, proposition 5.4.3]). If there exists α > 0 such that for every x � T2

we have

(A1) DxTδ(Ku
α(x)) � Ku

α(Tδ(x)) and DxT�1
δ (Ks

α(x)) � Ks
α(T�1

δ (x)); and
(A2) |DxTδv| < |v| for v � Ks

α(x)\{0} and
��DxT�1

δ v
�� < |v| for v � Ku

α(x)\{0}.

Then there are constants νu,δ > 1 and 0 < νs,δ < 1, and for each x � T2, subspaces Es
δ(x)

and Eu
δ (x) such that

(a) TxT
2 = Es

δ(x) � Eu
δ (x);

(b) DxT�1
δ (Es

δ(x)) = Es(T�1
δ (x)) and DxTδ(Eu

δ (x)) = Eu(Tδ(x));
(c)

���DxTδ |Es
δ
(x)

��� � νs,δ and
���DxT�1

δ |Eu
δ

(x)

��� � ν�1
u,δ ; and

(d) Es
δ(x) � Ks

α(x) and Eu
δ (x) � Ku

α(x).

In particular, Tδ is Anosov.

Lemma D.3. If δ � [0, 0.0108) then Tδ is Anosov and the conclusion of proposition D.2
holds with α = 0.118 72.

Proof. We first diagonalise DxT0 as R�1
θ ΛRθ, where Λ is a 2 × 2 diagonal matrix with the

vector [λ, 1/λ] on the diagonal, and Rθ is clockwise rotation by angle θ = tan�1((1 �
�

5)/2).
Note that DxTδ = DxT0 +Δx where Δx : R2 � R2 is defined by the matrix

Δx =

�
�2πδ sin(2πx1) 0

0 4πδ cos(4πx2 + 1)

�
.

We use the shorthand δ1 = �2πδ sin(2πx1) and δ2 = 4πδ cos(4πx2 + 1). In order to sat-
isfy the second part of (A1) of proposition D.2, we require that Λ + RθΔxR�1

θ preserve
Ku

α := {(β, γ)� � R2 : |β| � |γ|α}. One may confirm that

RθΔxR�1
θ =

�
δ1 cos2 θ + δ2 sin2 θ (1/2) sin(2θ)(δ2 � δ1)
(1/2) sin(2θ)(δ1 � δ2) δ2 cos2 θ + δ1 sin2 θ

�
. (63)

Multiplying Λ + RθΔxR�1
θ with the vectors (α, 1)� and (�α, 1)� we see that a sufficient

condition to preserve Ku
α is that

(λ+ δ�)α+ δ�

1/λ� δ� � δ� α
� α,
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where δ� = max{supxδ1, supxδ2} = 4πδ. Since 1/λ� δ� � δ�α > 0 for 0 � δ � 0.1862 we
may rearrange the above in terms of δ to obtain

δ � α(1/λ� λ)
4π(α+ 1)2

. (64)

Since δ � [0, 0.0108), by lemma D.1 the map Tδ is a diffeomorphism. To satisfy the first
part of (A1) of proposition D.2, using the notation above, we note that

(DxTδ)�1 = (1/ det(DxTδ))

�
1 + δ2 �1
�1 2 + δ1

�
, (65)

and that for the purposes of cone preservation we need not consider the determinant factor.
Therefore, (DxTδ)�1 = (1/det(DxTδ))((DxT0)�1 +Δ�

x), where

Δ�
x =

�
δ2 0
0 δ1

�
. (66)

The cone preservation condition will be implied by the preservation of Ks
α := {(γ, β)� � R2 :

|β| � |γ|α} by DxT�1
δ . Multiplying Λ�1 + RθΔ

�
xR�1

θ with the vectors (1,α)� and (1,�α)�

yields an identical set of calculations to those for Ku
α, resulting in the same bound for δ as in

(64). Substitutingα = 0.118 72 into this bound yields a numerical upper bound for δ of 0.0169,
which is larger than the value reported in the proposition statement.

To verify (A2) we demonstrate contraction for elements of Ks
α; the same contractions occur

in the original (unrotated) cones Ks
α(x) and Ku

α(x) under DxTδ and DxT�1
δ , respectively. Writing

Λ + RθΔxR�1
θ =

�
λ+ a b

c λ�1 + d

�
and multiplying by the unit vector (1/

�
1 + β2)(1, β)�

for �α � β � α, the square of the norm of this vector is ((λ+ a)2 + b2β2 + 2(λ+ a)bβ +
c2 + (λ�1 + d)2β2 + 2cβ(λ�1 + d))/(1 + β2). We require the above expression to be strictly
less than 1 for contraction. Grouping terms to obtain a quadratic in β we wish to show

β2(b2 + (λ�1 + d)2 � 1) + 2β((λ+ a) + c(λ�1 + d)) + ((λ+ a)2 + c2 � 1) < 0

(67)

for �α � β � α. This quadratic has a local minimum since λ�1 � 1 + |d| whenever δ �
[0, 0.1288); therefore the maxima are at β = –α. Using the fact that max{|a| , |b| , |c| , |d|} �
δ� one may readily check that contraction occurs at β = –α for δ� � [0, 0.6734) or, equiva-
lently, for δ � [0, 0.0536).

The contraction of vectors in Ku
α under DxT�1

δ follows similarly. With the notation above,
one easily verifies 1 � (5/2)δ� � (δ�)2/2 � det(DxTδ). Replacing the two ‘1’s in (67) with
the factor 1 � (5/2)δ� � (δ�)2/2, one verifies as above that the polynomial (67) has posi-
tive leading term for δ � [0, 0.1288) and is negatively valued for �α � β � α provided that
δ � [0, 0.0293). Thus vectors in Ku

α are contracted under DxT�1
δ for δ in the advertised range.

As we have verified all the conditions of proposition D.2 for Tδ whenever δ � [0, 0.0108),
it follows that Tδ is Anosov for δ in the same range. �

To complete the proof of proposition 6.7 it now suffices to prove that Tδ satisfies the condi-
tions of proposition 6.6. Denote by πs

x (resp. πu
x ) the projection onto Es

δ(x) along Eu
δ (x) (resp.

Eu
δ (x) along Es

δ(x)). Let ws and wu be the unit vectors in the rays defined by
�

1, �
�

5�1
2

�
and
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�
1,

�
5�1
2

�
, respectively. Let wu(x) and ws(x) be the unit vectors in Es

δ(x) and Eu
δ (x) for which

wu(x),wu� > 0 and ws(x),ws� > 0. For v � R2 we denote by v� the vector obtained by
rotating v anticlockwise by π/2 about the origin. In particular, w�

s = wu and w�
u = �ws. For

v � TxT
2 let

�v�0 =

��πs
xv

��2
+

��πu
xv

��2
.

We can recover a Riemannian metric from �•�0 by the polarisation identity. By proposition D.2

we have
���DxTδ |Es

δ
(x)

��� � νs,δ and
���DxT�1

δ |Eu
δ

(x)

��� � ν�1
u,δ . Thus the metric induced by �•�0 satisfies

(M2) and is adapted. In the following two lemmas we collect some useful inequalities, before
proving that Tδ satisfies the conditions of proposition 6.6 for all δ � [0, 0.0108) in lemma D.6.
The first such bound follows from basic trigonometry.

Lemma D.4. If vi � Ks
α(x), i = 1, 2 with |vi| = 1 and v1, v2� > 0, then |v1 � v2| � 2α�

1+α2
.

Similar statements hold for vi � Ku
α(x).

Lemma D.5. If α < 1, then for every v � TxT
2 we have

�
(1 � α2)2 � β(α)

1 � α2
|v| � �v�0 �

�
(1 � α2)2 + β(α)

1 � α2
|v| ,

where

β(α) :=
�

2α(3α+
�

2 + 3α2)


1 + α

�
2 + 3α2.

Proof. Let v � TxT
2 with |v| = 1. By writing v = πs

xv + πu
xv we find that

�v�0 =

��πs
xv

��2
+

��πu
xv

��2
=


1 � 2πs

xv, πu
xv�. (68)

One verifies that πs
xv = wu(x)� ,v�

wu(x)� ,ws(x)�ws(x) and πu
xv = ws(x)� ,v�

ws(x)� ,wu(x)�wu(x). Hence

��πs
xv, πu

xv�
�� =

����
ws(x),wu(x)�ws(x)�, v�wu(x)�, v�

ws(x)�,wu(x)�wu(x)�,ws(x)�

���� . (69)

Since ws(x) � Ks
α(x) and wu(x) � Ku

α(x), basic trigonometry yields

|ws(x),wu(x)�| � cos
�π

2
� 2 tan�1(α)

�
= 2 sin(tan�1(α)) cos(tan�1(α)) =

2α
1 + α2

. (70)

Alternatively, as ws(x)� � Ku(x),

��ws(x)�,wu(x)�
�� � cos(2 tan�1(α)) = cos2(tan�1(α)) � sin2(tan�1(α)) =

1 � α2

1 + α2
.

(71)

The same argument yields the same lower bound for
��wu(x)�,ws(x)�

��. Writing v = Aws(x) +
Bws(x)�, we have

ws(x)�, v�wu(x)�, v� = B(�A + wu(x)� + ws(x), v�).
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Since ws(x) and ws(x)� are orthogonal and |v| = 1, we have |B| =
�

1 � A2. On the other
hand, by lemma D.4 and Cauchy–Schwarz we have

��wu(x)� + ws(x), v�
�� � 2α�

1+α2
. Upon

substituting we have

��ws(x)�, v�wu(x)�, v�
�� �

�
1 � A2

�
|A|+

2α�
1 + α2

�
. (72)

We may bound the right-hand side of (72) from above by differentiating with respect to A and
solving the resulting quadratic equation (noting that we only have to consider the case where
A � 0 due to the symmetry about A = 0 in the right-hand side of (72)). In particular, (72) is
maximised when

|A| =
�α+

�
2 + 3α2

2
�

1 + α2
,

which, when substituted into (72), yields

��ws(x)�, v�wu(x)�, v�
�� � (3α+

�
2 + 3α2)

�
1 + α

�
2 + 3α2

2
�

2(1 + α2)
. (73)

Applying (70), (71) and (73) to (69) yields

��πs
xv, πu

xv�
�� � α(3α+

�
2 + 3α2)

�
1 + α

�
2 + 3α2

�
2(1 � α2)2

. (74)

Hence, upon substituting (74) into (68) we obtain

�
(1 � α2)2 � β(α)

1 � α2
|v| � �v�0 �

�
(1 � α2)2 + β(α)

1 � α2
|v|

as announced. �

Lemma D.6. In the setting of lemma D.3 and proposition D.2 we have Cτ ,0ΘTδ ,0 < 1.

Proof. Since α < 1 the conclusion of lemma D.5 holds. Since Dxτ y is an isometry with
respect to the usual Riemannian metric on the tangent space of T2, by lemma D.5 we have

sup
�v�0�1

�Dxτyv�0 �
�

(1 � α2)2 + β(α)
(1 � α2)2 � β(α)

.

Thus

Cτ ,0 �
�

(1 � α2)2 + β(α)
(1 � α2)2 � β(α)

. (75)

We turn to bounding ΘTδ ,0. Since πs
x and πu

x are complementary orthogonal projections with
respect to the inner product associated to �•�0 we have

ΘTδ ,0 = sup
x,y�T2

�πs
x+yDxτy � (Dxτy)πs

x�0.
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By using lemma D.5 in the same way as when bounding Cτ ,0 we find that

ΘTδ ,0 �
�

(1 � α2)2 + β(α)
(1 � α2)2 � β(α)

sup
x,y�T2

��πs
x+yDxτy � (Dxτy)πs

x

�� .

Let v � TxT
2 with |v| = 1. Recalling the definition of πs

x and then applying the triangle and
Cauchy–Schwarz inequalities we have

|(πs
x+yDxτy � (Dxτy)πs

x)v|

=

����
wu(x + y)�, v�

wu(x + y)�,ws(x + y)�
ws(x + y) �

wu(x)�, v�
wu(x)�,ws(x)�

ws(x)

����

�
����

wu(x + y)�, v�
wu(x + y)�,ws(x + y)�

ws(x + y) �
wu(x)�, v�

wu(x + y)�,ws(x + y)�
ws(x + y)

����

+

����
wu(x)�, v�

wu(x + y)�,ws(x + y)�
ws(x + y) �

wu(x)�, v�
wu(x)�,ws(x)�

ws(x + y)

����

+

����
wu(x)�, v�

wu(x)�,ws(x)�
ws(x + y) �

wu(x)�, v�
wu(x)�,ws(x)�

ws(x)

����

�
��wu(x + y)�, v� � wu(x)�, v�

��

|wu(x + y)�,ws(x + y)�|
+

��wu(x + y)�,ws(x + y)� � wu(x)�,ws(x)�
��

|wu(x + y)�,ws(x + y)�wu(x)�,ws(x)�|

+
|ws(x + y) � ws(x)|
|wu(x)�,ws(x)�|

. (76)

We will bound the various terms on the right-hand side of (76). By lemma D.4 we have

��wu(x + y)�, v� � wu(x)�, v�
�� � 2α�

1 + α2
, and |ws(x + y) � ws(x)| � 2α�

1 + α2
.

(77)

By definition we have wu(x)�,ws(x)� � 0 for every x � T2. More precisely, by using
Cauchy–Schwarz and (71) we find that

�1 � wu(x)�,ws(x)� � α2 � 1
1 + α2

.

Hence,

��wu(x + y)�,ws(x + y)� � wu(x)�,ws(x)�
�� � α2

1 + α2
. (78)

Using (78) and (71) to bound the second term of (76), we obtain

��wu(x + y)�,ws(x + y)� � wu(x)�,ws(x)�
��

|wu(x + y)�,ws(x + y)�wu(x)�,ws(x)�|
� α2(1 + α2)

(1 � α2)2
. (79)
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Using (77) and (71) to bound the first term of (76), (78) and (71) to bound the second term,
and the bound (79) yields

��(πs
x+yDxτy � (Dxτy)πs

x)v
�� � 2α

�
1 + α2

1 � α2
+

α2(1 + α2)
(1 � α2)2

+
2α

�
1 + α2

1 � α2

� 4α(1 � α2)
�

1 + α2 + α2(1 + α2)
(1 � α2)2

.

Thus,

ΘTδ ,0 �
��

(1 � α2)2 + β(α)
(1 � α2)2 � β(α)

� �
4α(1 � α2)

�
1 + α2 + α2(1 + α2)

(1 � α2)2

�

.

(80)

Combining (76) and (80) yields

Cτ ,0ΘTδ ,0 �
�

(1 � α2)2 + β(α)
(1 � α2)2 � β(α)

� �
4α(1 � α2)

�
1 + α2 + α2(1 + α2)

(1 � α2)2

�

.

So if α < 0.118 72 then Cτ ,0ΘTδ ,0 < 1. �

ORCID iDs

Harry Crimmins https://orcid.org/0000-0002-2633-7117
Gary Froyland https://orcid.org/0000-0002-2995-0582

References

[1] Aimino R and Vaienti S 2015 A note on the large deviations for piecewise expanding multidi-
mensional maps Nonlinear Dynamics New Directions: Theoretical Aspects (Berlin: Springer)
pp 1–10

[2] Bahsoun W, Galatolo S, Nisoli I and Niu X 2016 Rigorous approximation of diffusion coefficients
for expanding maps J. Stat. Phys. 163 1486–503

[3] Bahsoun W, Melbourne I and Ruziboev M 2018 Variance continuity for Lorenz flows
(arXiv:1812.08998)

[4] Blank M, Keller G and Liverani C 2002 Ruelle–Perron–Frobenius spectrum for Anosov maps
Nonlinearity 15 1905

[5] Brin M and Stuck G 2002 Introduction to Dynamical Systems (Cambridge: Cambridge University
Press)

[6] Buckholtz D 2000 Hilbert space idempotents and involutions Proc. Am. Math. Soc. 128 1415–8
[7] Butterley O and Liverani C 2007 Smooth Anosov flows: Correlation spectra and stability J. Mod.

Dynam. 1 301–22
[8] Crimmins H and Froyland G 2019 Stability and approximation of statistical limit laws for

multidimensional piecewise expanding maps Ann. Henri Poincar·e 20 3113–61
[9] Dellnitz M and Junge O 1999 On the approximation of complicated dynamical behavior SIAM J.

Numer. Anal. 36 491–515
[10] Fernando K and Hebbar P 2020 Higher order asymptotics for large deviations–part I Asymptotic

Anal. accepted
[11] Froyland G 1995 Finite approximation of Sinai-Bowen-Ruelle measures for Anosov systems in two

dimensions Random Comput. Dyn. 3 251–64

6295

https://orcid.org/0000-0002-2633-7117
https://orcid.org/0000-0002-2633-7117
https://orcid.org/0000-0002-2633-7117
https://orcid.org/0000-0002-2995-0582
https://orcid.org/0000-0002-2995-0582
https://orcid.org/0000-0002-2995-0582
https://doi.org/10.1007/s10955-016-1523-y
https://doi.org/10.1007/s10955-016-1523-y
https://doi.org/10.1007/s10955-016-1523-y
https://doi.org/10.1007/s10955-016-1523-y
https://arxiv.org/abs/1812.08998
https://doi.org/10.1088/0951-7715/15/6/309
https://doi.org/10.1088/0951-7715/15/6/309
https://doi.org/10.1090/s0002-9939-99-05233-8
https://doi.org/10.1090/s0002-9939-99-05233-8
https://doi.org/10.1090/s0002-9939-99-05233-8
https://doi.org/10.1090/s0002-9939-99-05233-8
https://doi.org/10.3934/jmd.2007.1.301
https://doi.org/10.3934/jmd.2007.1.301
https://doi.org/10.3934/jmd.2007.1.301
https://doi.org/10.3934/jmd.2007.1.301
https://doi.org/10.1007/s00023-019-00822-2
https://doi.org/10.1007/s00023-019-00822-2
https://doi.org/10.1007/s00023-019-00822-2
https://doi.org/10.1007/s00023-019-00822-2
https://doi.org/10.1137/s0036142996313002
https://doi.org/10.1137/s0036142996313002
https://doi.org/10.1137/s0036142996313002
https://doi.org/10.1137/s0036142996313002


Nonlinearity 33 (2020) 6244 H Crimmins and G Froyland

[12] Froyland G, González-Tokman C and Quas A 2014 Detecting isolated spectrum of transfer and
Koopman operators with Fourier analytic tools J. Comput. Dynam. 1 249–78

[13] Gouëzel S 2015 Limit theorems in dynamical systems using the spectral method Proc. of Symp. in
Pure Mathematics vol 89 (Providence, RI: American Mathematical Society) pp 161–93

[14] Gouëzel S and Liverani C 2006 Banach spaces adapted to Anosov systems Ergod. Theor. Dyn. Syst.
26 189–217

[15] Hennion H and Herv·e L 2001 Limit Theorems for Markov Chains and Stochastic Properties of
Dynamical Systems by Quasi-Compactness vol 1766 (Berlin: Springer)

[16] Hirsch M 2012 Differential Topology (Graduate Texts in Mathematics) (New York: Springer)
[17] Hörmander L 1990 The Analysis of Linear Partial Differential Operators I (Berlin: Springer)
[18] Jenkinson O, Pollicott M and Vytnova P 2018 Rigorous computation of diffusion coefficients for

expanding maps J. Stat. Phys. 170 221–53
[19] Kato T 1966 Perturbation Theory for Linear Operators (Grundlehren der mathematischen

Wissenschaften) (Berlin: Springer)
[20] Katok A and Hasselblatt B 1997 Introduction to the Modern Theory of Dynamical Systems vol 54

(Cambridge: Cambridge University Press)
[21] Katok A, Knieper G, Pollicott M and Weiss H 1989 Differentiability and analyticity of topological

entropy for Anosov and geodesic flows Invent Math. 98 581–97
[22] Katznelson Y 2002 An Introduction to Harmonic Analysis (Cambridge: Cambridge University

Press)
[23] Keller G and Liverani C 1999 Stability of the spectrum for transfer operators Ann. della Scuola

Norm. Super. Pisa - Cl. Sci. 28 141–52
[24] Kifer J I 1974 On small random perturbations of some smooth dynamical systems Math. USSR-

Izvestiya 8 1083–107
[25] Lang S 2012 Real and Functional Analysis (Graduate Texts in Mathematics) (New York: Springer)
[26] Orey S and Pelikan S 1989 Deviations of trajectory averages and the defect in Pesin’s formula for

Anosov diffeomorphisms Trans. Am. Math. Soc. 315 741–53
[27] Ratner M 1973 The central limit theorem for geodesic flows on n-dimensional manifolds of negative

curvature Isr. J. Math. 16 181–97
[28] Roe J 1988 Elliptic Operators, Topology and Asymptotic Methods (Boca Raton, FL: CRC Press)
[29] Rousseau-Egele J 1983 Un th·eoreme de la limite locale pour une classe de transformations dilatantes

et monotones par morceaux Ann. Probab. 11 772–88
[30] Ruelle D 1997 Differentiation of SRB states Commun. Math. Phys. 187 227–41
[31] Ruelle D 2008 Differentiation of SRB states for hyperbolic flows Ergod. Theor. Dyn. Syst. 28

613–31
[32] Slipantschuk J, Bandtlow O F and Just W 2020 Dynamic mode decomposition for analytic maps

Commun. Nonlinear Sci. Numer. Simulat. 84 105179
[33] Wormell C 2019 Spectral Galerkin methods for transfer operators in uniformly expanding dynamics

Numer. Math. 142 421–63
[34] Young L-S 1986 Stochastic stability of hyperbolic attractors Ergod. Theor. Dyn. Syst. 6 311–9
[35] Young L-S 2002 What are SRB measures, and which dynamical systems have them? J. Stat. Phys.

108 733–54

6296

https://doi.org/10.3934/jcd.2014.1.249
https://doi.org/10.3934/jcd.2014.1.249
https://doi.org/10.3934/jcd.2014.1.249
https://doi.org/10.3934/jcd.2014.1.249
https://doi.org/10.1017/s0143385705000374
https://doi.org/10.1017/s0143385705000374
https://doi.org/10.1017/s0143385705000374
https://doi.org/10.1017/s0143385705000374
https://doi.org/10.1007/s10955-017-1930-8
https://doi.org/10.1007/s10955-017-1930-8
https://doi.org/10.1007/s10955-017-1930-8
https://doi.org/10.1007/s10955-017-1930-8
https://doi.org/10.1007/bf01393838
https://doi.org/10.1007/bf01393838
https://doi.org/10.1007/bf01393838
https://doi.org/10.1007/bf01393838
https://doi.org/10.1070/im1974v008n05abeh002139
https://doi.org/10.1070/im1974v008n05abeh002139
https://doi.org/10.1070/im1974v008n05abeh002139
https://doi.org/10.1070/im1974v008n05abeh002139
https://doi.org/10.1090/s0002-9947-1989-0935534-4
https://doi.org/10.1090/s0002-9947-1989-0935534-4
https://doi.org/10.1090/s0002-9947-1989-0935534-4
https://doi.org/10.1090/s0002-9947-1989-0935534-4
https://doi.org/10.1007/bf02757869
https://doi.org/10.1007/bf02757869
https://doi.org/10.1007/bf02757869
https://doi.org/10.1007/bf02757869
https://doi.org/10.1214/aop/1176993522
https://doi.org/10.1214/aop/1176993522
https://doi.org/10.1214/aop/1176993522
https://doi.org/10.1214/aop/1176993522
https://doi.org/10.1007/s002200050134
https://doi.org/10.1007/s002200050134
https://doi.org/10.1007/s002200050134
https://doi.org/10.1007/s002200050134
https://doi.org/10.1017/s0143385707000260
https://doi.org/10.1017/s0143385707000260
https://doi.org/10.1017/s0143385707000260
https://doi.org/10.1017/s0143385707000260
https://doi.org/10.1016/j.cnsns.2020.105179
https://doi.org/10.1016/j.cnsns.2020.105179
https://doi.org/10.1007/s00211-019-01031-z
https://doi.org/10.1007/s00211-019-01031-z
https://doi.org/10.1007/s00211-019-01031-z
https://doi.org/10.1007/s00211-019-01031-z
https://doi.org/10.1017/s0143385700003473
https://doi.org/10.1017/s0143385700003473
https://doi.org/10.1017/s0143385700003473
https://doi.org/10.1017/s0143385700003473
https://doi.org/10.1023/a:1019762724717
https://doi.org/10.1023/a:1019762724717
https://doi.org/10.1023/a:1019762724717
https://doi.org/10.1023/a:1019762724717

	Fourier approximation of the statistical properties of Anosov maps on tori
	1.  Introduction
	2.  A review of the spectral stability of twisted quasi-compact operators
	3.  Stability of the statistical properties of dynamical systems via the naive Nagaev–Guivarc'h method
	4.  Stability of statistical limit laws for Anosov maps


