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Plan for the talk

I Number-theoretic background and heuristics
(Excellent reference: Washington’s Cyclotomic Fields.)

I Some algorithms

I Software and hardware

David Harvey (joint work with Joe Buhler) Large-scale verification of Vandiver’s conjecture



Number-theoretic background and
heuristics
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Notation

p = an odd prime

ζ = primitive p-th root of unity

K = Q(ζ)

K+ = Q(ζ) ∩ R = Q(ζ + ζ−1) = maximal real subfield of K

A, A+ = class groups of K , K+

Ap, A+
p = p-parts of A, A+

h, h+, hp, h+
p = orders of A, A+, Ap, A+

p

G = Gal(K/Q) ∼= (Z/pZ)×

σa = (ζ 7→ ζa) ∈ G for a ∈ (Z/pZ)×.

David Harvey (joint work with Joe Buhler) Large-scale verification of Vandiver’s conjecture



Vandiver’s conjecture

Vandiver’s conjecture asserts that h+
p = 1 for all p.

(Equivalently p - h+.)

Also known as the Kummer–Vandiver conjecture. Arose in
connection with early work on Fermat’s last theorem.

Kummer verified it by hand for p < 200.

Vandiver verified it with a desk calculator up to about 600.

Lehmer verified it up to about 5000 in the late 1940s (one of the
first pure mathematics calculations performed on an electronic
computer).

...

Most recent is Buhler et al (2001), verified up to 12,000,000.
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Vandiver’s conjecture

Current project (joint work with Joe Buhler):

I Aim: check it for all p < 39 · 222 = 163,577,856.

I Done so far: verified completely up to 227 = 134,217,728.

I For p < 163,577,856, have done the hard part (computing the
‘irregular indices’), Vandiver verification is in progress.

The cost to verify up to X with state-of-the-art algorithms is about
O(X 2 log X ), so this computation is about 200 times larger than
the 2001 attempt.

I’ll say more about the computation later.
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Näıve heuristics

Suppose that h+ is “uniformly distributed” modulo p. Then

#{counterexamples ≤ X} ≈
∑
p≤X

1

p
≈ log log X .

Maybe this accounts for not seeing any counterexamples yet.

But “uniformly distributed” is a dangerous assumption. For the
whole class group (not just the plus part) there is good empirical
evidence that p|h about 39.35% (= 1− e−1/2) of the time.

We can (heuristically) explain this behaviour by studying the
Zp[G ]-module structure of Ap.
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Galois module structure of Ap

Decompose

Ap =

p−2⊕
i=0

eiAp

according to the orthogonal idempotents

ei =
1

p − 1

p−1∑
a=1

ωi (a)σ−1
a ∈ Zp[G ], 0 ≤ i ≤ p − 2,

where ω : (Z/pZ)× → Z×p is the Teichmüller character.

Note: eiAp is the submodule where σa acts as ωi (a) for all a.
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Galois module structure of Ap

Fact: e0Ap = e1Ap = 0.

For remaining odd eigenspaces, have Ribet’s theorem:

eiAp 6= 0 ⇐⇒ p | Bp−i , i = 3, 5, . . . , p − 2,

where Bk is the k-th Bernoulli number.

p is called irregular if p | Bk for some k = 2, 4, . . . , p − 3.

Such an integer k is called an irregular index for p; by Ribet’s
theorem these correspond precisely to the non-trivial odd
eigenspaces of Ap.

The index of irregularity, i(p), is the number of irregular indices
that p has (number of non-trivial odd eigenspaces).
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Galois module structure of Ap

Vandiver’s conjecture concerns the even eigenspaces; it claims that

eiAp = 0, i = 2, 4, . . . , p − 3.

Note: the odd and even eigenspaces are related by a reflection
theorem. If i is even, then

dimp(eiAp) ≤ dimp(ep−iAp) ≤ 1 + dimp(eiAp).

For example, if Vandiver’s conjecture is true, then the odd
eigenspaces must have p-rank ≤ 1.
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Irregular primes (examples)

The smallest irregular prime is p = 37. We have

37 | B32 =
−7709321041217

510
,

so k = 32 is an irregular index for 37, and in fact i(37) = 1.
Ribet’s theorem implies that e5A37 6= 0.

The largest known i(p) is 7, which first occurs for p = 3,238,481.
Ribet’s theorem says that the p-rank of Ap is at least 7.
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Example Sage session

Construct Q(ζ37) and compute class group:

sage : p r oo f . n umbe r f i e l d ( Fa l s e ) # assume GRH
sage : K.<zeta> = Cyc l o t om i cF i e l d (37)
sage : G = K. c l a s s g r o u p ( ) # about 3 minutes ( v i a PARI )
sage : G . o r d e r ( )
37

Let J be a non-principal ideal:

sage : J = G. gen ( ) . i d e a l ( ) ; J
F r a c t i o n a l i d e a l (94351 , z e t a − 40856)
sage : J . i s p r i n c i p a l ( )
Fa l s e

Consider the image of J under σ20:

sage : s igmaJ = K. i d e a l (94351 , z e t a ˆ20 − 40856) ; s igmaJ
F r a c t i o n a l i d e a l (94351 , z e t a + 16284)
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Example Sage session

By Ribet’s theorem, J must lie in e5A37, so σ20 should act on J as
multiplication by 205 ≡ 18 mod 37. We should have

(σ20(J))2J ∼ (J18)2J ∼ (1).

Let’s check it:
sage : L = sigmaJ ∗ s igmaJ ∗ J ; L
F r a c t i o n a l i d e a l ( z e t a ˆ35 + ze ta ˆ33 + ze ta ˆ32 + ze ta ˆ29 + ze ta ˆ28 +

2∗ z e t a ˆ27 + ze ta ˆ26 + ze ta ˆ25 + 2∗ z e t a ˆ24 + ze ta ˆ23 +
ze ta ˆ21 − z e t a ˆ19 − z e t a ˆ17 + ze ta ˆ15 − z e t a ˆ14 +
ze ta ˆ12 + ze ta ˆ11 + ze ta ˆ10 + ze ta ˆ9 + ze ta ˆ7 +
ze ta ˆ6 + ze ta ˆ4 + 2∗ z e t a + 1)

sage : L . i s p r i n c i p a l ( )
True
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Heuristics for irregular primes

Assume that Bk is “uniformly distributed” modulo p (for k even),
i.e. is divisible by p with probability 1/p.

Then

P (i(p) = r) =

(1
2(p − 3)

r

)(
1− 1

p

) 1
2
(p−3)−r (1

p

)r

→ e−1/2

2r r !
as p →∞.

Poisson distribution with parameter 1/2.
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Heuristics for irregular primes

Empirical data strongly supports the Poisson hypothesis (but we
can’t even prove there are infinitely many regular primes!):

i(p) #p fraction Poisson prediction

0 5,559,267 0.6066532 0.6065307
1 2,779,293 0.3032894 0.3032653
2 694,218 0.0757563 0.0758163
3 115,060 0.0125559 0.0126361
4 14,425 0.0015741 0.0015795
5 1,451 0.0001583 0.0001580
6 112 0.0000122 0.0000132
7 5 0.0000005 0.0000009

Table: Irregularity statistics for p < 163,577,856
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Cyclotomic units

The best way to verify Vandiver’s conjecture for a single p is via
the cyclotomic units of K .

Let E , E+ be the unit groups of K , K+.

Let C+ ⊆ E+ be the group of real cyclotomic units. It is
generated by elements of the form

ζ
(1−a)

2
1− ζa

1− ζ
=

sin(πa/p)

sin(π/p)
, 1 ≤ a ≤ p − 1.
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Cyclotomic units

Fact: C+ is of finite index of E+, and h+ = [E+ : C+].

Vandiver’s conjecture is equivalent to the statement that the
p-part of E+/C+ is trivial.

Note: A+ is not in general isomorphic to E+/C+ as Galois
modules. It is unknown whether they are always isomorphic as
abelian groups (according to Washington). For the p-parts, it is
known that equality of orders holds for each eigenspace (of course
Vandiver claims they are all trivial!).
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Structure of E+

Dirichlet’s unit theorem =⇒ rankZ E+ = (p − 3)/2.

Let E+
p = Zp ⊗ E+.

As a Zp[G ]-module, we have the decomposition

E+
p =

p−3⊕
i=2

i even

eiE
+
p ,

where each eiE
+
p
∼= Zp.
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Structure of E+

The cyclotomic units can be used to explicitly write down elements
of each component eiE

+
p .

Let g ∈ (Z/pZ)× be a primitive root, and let

Si =

p−1∏
a=1

(
ζ(1−g)/2 1− ζg

1− ζ

)ω(a)iσ−1
a

∈ eiE
+
p .

Then Si is a p-adic limit of cyclotomic units, and is non-trivial (the
latter depends on the fact that Lp(1, ωi ) 6= 0).

However, Si might not generate eiE
+
p
∼= Zp; it might lie in pZp.

Vandiver’s conjecture ⇐⇒ each Si does generate eiE
+
p .
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More heuristics

This suggests another heuristic: suppose that Si lies in pZp with
probability 1/p for each i .

There are (p − 3)/2 indices to choose from. We obtain the same
Poisson distribution as before, so Vandiver’s conjecture should fail
for about 39.35% of primes!

Obviously this heuristic is broken. There must be an obstruction...
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More heuristics

Fact: if Si ∈ pZp, then p | Bi . (Related to reflection theorem.)

So there are only i(p) (not p−3
2 ) chances for Si to lie in pZp.

Assuming this is the only obstruction, the number of Vandiver
counterexamples ≤ X should be about

∑
p≤X

∞∑
r=0

P(i(p) = r)× P(some Si ∈ eiE
+
p )

=
∑
p≤X

∞∑
r=0

(
e−1/2

2r r !

)(
1−

(
1− 1

p

)r)
=
∑
p≤X

1− e
−1
2p ≈

∑
p≤X

1

2p

∼ 1

2
log log X .
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More heuristics

For example:

I About 1.396 counterexamples less than 12,000,000.

I About 1.467 counterexamples less than 163,577,856.

Chance of success for current project was maybe 7%.

Actually it’s worse than it looks, since the first few (regular) primes
account for the bulk of those estimates.

Taking into account the actual values of i(p) for each p, we obtain
an estimate of 0.748 counterexamples for p < 163,577,856.
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Some unreasonable extrapolations

On average, expect one counterexample for p < 1014.

Moore’s law =⇒ get to 1014 by about 2084 AD (I will be 104).

Need about 1 petabyte (1 million gigabytes) memory to handle a
single prime in this range.

Expect two counterexamples for p < 10100.

Moore’s law =⇒ get to 10100 in 1000 years.

The universe has insufficiently many particles to satisfy memory
requirements of current algorithms.
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Some algorithms
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Some algorithms

Two steps to verify Vandiver’s conjecture for given p:

1. Compute B0,B2, . . . ,Bp−3 modulo p, to locate the irregular
indices for p.

2. For each irregular index k, check whether Sk is a p-th power
in ekE+

p .

Step 1 is much more expensive than step 2.

(Along the way we also check other cyclotomic invariants, in
particular that each nontrivial eiAp is no bigger than Z/pZ,
i.e. that Ap is the smallest it can be consistent with i(p).)
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Computing Bernoulli numbers modulo p

Two methods for computing B0,B2, . . . ,Bp−3 modulo p:

I The “power series method”.

I The “Voronoi congruence method”.

Both have complexity O(p log2 p) (ignoring log log p terms).

But different implied constants and memory usage.
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The power series method

Simplest version: use the identity

x

ex − 1
=
∑
k≥0

Bk

k!
xk .

Uses a single power series inversion over Z/pZ of length ∼ p.

Fast power series arithmetic yields running time O(p log2 p).

(Pre-1990 algorithms used some recurrence like

Bn = − 1

n + 1

n−1∑
k=0

(
n + 1

k

)
Bk ,

and computed sequentially B2,B4,B6, . . . in time O(p2).)
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The power series method

There are redundancies, e.g. Bk = 0 for k = 3, 5, . . . , p − 2. Can
exploit this via identities like

x2

cosh x − 1
= −2 +

∞∑
k=0

(2n − 1)B2n

(2n)!
x2n.

Only need power series inversion of length ∼ p/2.

More sophisticated ‘multisectioning’ versions exist. We used one
that involves:

I One series inversion of length ∼ p/8.

I Four series multiplications of length ∼ p/8.

This strategy saves a lot of memory (and possibly time, but this is
unclear...)
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The Voronoi congruence method

Let g ∈ Z/pZ be a primitive root, and let

h(x) =

{
x

p

}
− g

{
g−1x

p

}
+

g − 1

2
.

Use the following identity:

B2k ≡
4k

1− g2k

(p−3)/2∑
j=0

g2jk h(g j)

g j
(mod p).

This may be interpreted as a DFT (number-theoretic transform) of
the function j 7→ h(g j)/g j over Z/pZ.

Use Bluestein’s FFT algorithm to convert the DFT to a single
polynomial multiplication of length ∼ p/2 over Z/pZ.
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The Voronoi congruence method

This method has a fairly low constant in the running time, but
‘multisectioning’ opportunities only available when 1

2(p − 1) has
small factors. Memory constraints rule this out for large enough p.

The Voronoi congruence is also useful for verification purposes; can
evaluate Bk (mod p) for one pair (p, k) in time O(p). We store
several Bk for each p from the main computation, and then check
them with an independent implementation on different hardware
later.

(Spinoff project: one can compute Bk as an exact rational number,
using only modular information, faster than the usual ‘zeta
function algorithm’, using this type of formula.)
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Verifying Vandiver’s conjecture

Suppose k is an irregular index for p (i.e. p | Bk). Recall that

Sk =

p−1∏
a=1

(
ζ(1−g)/2 1− ζg

1− ζ

)ω(a−1)kσa

.

To test whether Sk is a p-th power, we can approximate modulo
(E+

p )p, and consider only

S∗k =

p−1∏
a=1

(
ζa(1−g)/2 1− ζag

1− ζa

)ap−1−k

,

which is now just a cyclotomic unit in K+.
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Verifying Vandiver’s conjecture

To test whether S∗k is a p-th power, we choose some degree 1
prime ideal ˜̀ in K and check whether S∗k is a p-th power in OK/˜̀.

This corresponds to choosing a prime ` ≡ 1 (mod p), choosing a
p-th root of unity t ∈ Z/`Z, and then checking whether

p−1∏
a=1

(
ta(1−g)/2 1− tag

1− ta

)ap−1−k

is a p-th power in Z/`Z. Very simple test, involving only rational
arithmetic.

If it is not a p-th power, then Vandiver holds for this eigenspace.

If it is a p-th power, we could try a different ` — but so far this
has never been necessary.
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Software and hardware
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The software

The most expensive part of the computation is finding the
Bernoulli numbers modulo p (to obtain the irregular indices).

This boils down to fast polynomial arithmetic in Z/pZ[x ] — in
particular polynomial multiplication and series inversion.

To make best use of the 64-bit processor, we do everything modulo
two primes simultaneously (27 + 27 < 64).

Parallelisation was handled with a simple MPI program (two primes
per task).
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zn poly

We used the zn poly polynomial arithmetic library:

I A C library, released under GPL

I Available from http://cims.nyu.edu/∼harvey/zn poly/

I Under development for about a year

I Supports any modulus that fits into an unsigned long
(performance is best for odd moduli)

I Good support for multiplication, series inversion, middle
products in high degree case

I Automatically tuned thresholds for all algorithms

I Under heavy development, lots of obvious things still missing
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zn poly multiplication performance
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Figure: Multiplication of polynomials modulo a 48-bit modulus (Opteron)
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Hardware

Small-to-medium machines:

I My laptop (2 × 2.0GHz Core 2 Duo, 1GB RAM)

I sage.math @ UW (16 × 1.8GHz Opteron, 64GB RAM)

I alhambra @ Harvard (16 × 2.6GHz Opteron, 96GB RAM)

I Joe Buhler’s cluster (20 × 3.4GHz Pentium 4, 1GB RAM
each)
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Hardware (to scale)
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More hardware

Also used some slightly larger machines at TACC (Texas Advanced
Computing Center, University of Texas, thanks to Fernando
Rodriguez Villegas):

I Lonestar: 1300 nodes.
I Each node = 4 × 2.66GHz Xeon (Woodcrest), 8GB RAM.
I Total cores = 5200, total RAM = 10 TB.
I We used ≈ 119000 core-hours.
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More hardware (to scale)
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Hardware

I Ranger: 3936 nodes.
I Each node = 16 × 2.3GHz Opteron (Barcelona), 32GB RAM.
I Total cores = 62976, total RAM = 123 TB.
I 4th most powerful computer worldwide in June 2008.
I We used ≈ 69000 core-hours.
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Hardware (to scale)
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Hardware

About 21 core-years altogether.

On both machines, have 2 GB RAM per core. If p ≈ 163,577,856,
one polynomial of length p/2 occupies 0.6 GB. Managing memory
was the biggest challenge of the computation.
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Thank you!
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