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Main result

M(n) := time needed to multiply n-bit integers.

(“time” = # steps on a multi-tape Turing machine.)

Theorem (H., van der Hoeven, 2018)

There is an integer multiplication algorithm achieving

M(n) = O(n log n 4log∗ n).

log∗ x is the iterated logarithm:

log∗ x :=

0 if x ≤ 1,

1 + log∗(log x) if x > 1.

Example: log∗(e(e(e(e(ee ))))) = 6.
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History of bounds for M(n)

< 1962 ? n2

1962 Karatsuba nlog 3/ log 2 ≈ n1.58

1963 Toom n 25
√

log2 n

1966 Schönhage n 2
√

2 log2 n(log n)3/2

1969 Knuth n 2
√

2 log2 n log n

1971 Schönhage–Strassen n log n log log n

2007 Fürer n log n K log∗ n for some K > 1

Fürer’s algorithm recurses from size n to size n′ exponentially

smaller than n. Number of recursion levels is log∗ n + O(1).

The const- K measures the “expansion factor” at each level.
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Progress on the value of K

2014 H.–van der Hoeven–Lecerf K = 8
†2014 H.–van der Hoeven–Lecerf K = 4
†2015 Covanov–Thomé K = 4
†2016 H.–van der Hoeven K = 4
∗2017 H. K = 6
∗∗2017 H.–van der Hoeven K = 4

√
2 ≈ 5.7

2018 H.–van der Hoeven K = 4

†: depends on unproved number-theoretic conjecture

∗: submitted, under review

∗∗: preprint, do not -icipate publication
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Implementation and performance
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Overview of new algorithm

Same overall structure as 2014 algorithm.

0) Start with multiplication problem of size n.

1) Reduce to convolution over “nice” coefficient ring,

coefficient size expon- -ially smaller than n.

2) Reduce to “long” DFTs, transform length comparable to n.

3) Use Cooley–Tukey to reduce to “short” DFTs,

transform length exponentially smaller than n.

4) Use Bluestein to reduce to “short” multiplications,

size exponentially smaller than n.

5) Recurse!

Steps 1–3 are same as Fürer. Step 4 eliminates need for Fürer’s

“fast roots of unity”.
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Why did we get K = 8 in the 2014 algorithm?

Three factors of 2 from different sources:

a) FFT multiplication. Need to recurse into both forward and

inverse DFTs.

b) Coefficient growth. If f and g have integer coefficients with k

bits, then the coefficients of fg have roughly 2k bits.

c) Truncated product problem. The algorithm works over C.

When multiplying complex numbers with k-bit m- -issa, need

to compute product with 2k bits and then truncate.

All of the K = 4 algorithms (both conditional and unconditional)

attack (c) by replacing C with Z/qZ for a suitable integer q.
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Primes with cyclic structure

This may be adv- -ageous if q has cyclic structure that maps

efficiently onto FFTs.

• H.–van der Hoeven–Lecerf (2014), Mersenne primes:

q = 2p − 1 =⇒ xn − 1.

• Covanov–Thomé (2015), generalised Fermat primes:

q = r2λ + 1 =⇒ x2λ + 1.

• H.–van der Hoeven (2016), plain vanilla FFT primes:

q = a · 2m + 1 =⇒ xm + a.
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The new algorithm

The idea of the new algorithm is to manufacture cyclic structure

for an almost arbitrary prime q.

Goal: reduce arithmetic in Z/qZ to arithmetic in Z[x ]/(xm + 1),

assuming that q = 1 (mod 2m).

In the rest of the talk I will demonstrate the method for

q = 3141592653589793238462833, m = 4.

The condition q = 1 (mod 8) guar- -ees existence of a primitive

8-th root of unity modulo q:

θ = 2542533431566904450922735 mod q.
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θ-representations

A θ-representation for u ∈ Z/qZ is an expression

u = am−1θ
m−1 + · · ·+ a1θ + a0,

where the ai are integers such that |ai | ≤ mq1/m.

For inst- :

u = 2718281828459045235360288 (mod q)

= 3366162 · θ3 + 951670 · θ2 − 5013490 · θ − 3202352.

Are θ-representations unique? Not necessarily:

u = −4133936 · θ3 + 1849981 · θ2 − 5192184 · θ + 1317423.

Notice that the total bitsize of (a0, . . . , am−1) is about the same as

the bitsize of q.

10



θ-representations

A θ-representation for u ∈ Z/qZ is an expression

u = am−1θ
m−1 + · · ·+ a1θ + a0,

where the ai are integers such that |ai | ≤ mq1/m.

For inst- :

u = 2718281828459045235360288 (mod q)

= 3366162 · θ3 + 951670 · θ2 − 5013490 · θ − 3202352.

Are θ-representations unique? Not necessarily:

u = −4133936 · θ3 + 1849981 · θ2 − 5192184 · θ + 1317423.

Notice that the total bitsize of (a0, . . . , am−1) is about the same as

the bitsize of q.

10



θ-representations

A θ-representation for u ∈ Z/qZ is an expression

u = am−1θ
m−1 + · · ·+ a1θ + a0,

where the ai are integers such that |ai | ≤ mq1/m.

For inst- :

u = 2718281828459045235360288 (mod q)

= 3366162 · θ3 + 951670 · θ2 − 5013490 · θ − 3202352.

Are θ-representations unique? Not necessarily:

u = −4133936 · θ3 + 1849981 · θ2 − 5192184 · θ + 1317423.

Notice that the total bitsize of (a0, . . . , am−1) is about the same as

the bitsize of q.

10



θ-representations

A θ-representation for u ∈ Z/qZ is an expression

u = am−1θ
m−1 + · · ·+ a1θ + a0,

where the ai are integers such that |ai | ≤ mq1/m.

For inst- :

u = 2718281828459045235360288 (mod q)

= 3366162 · θ3 + 951670 · θ2 − 5013490 · θ − 3202352.

Are θ-representations unique? Not necessarily:

u = −4133936 · θ3 + 1849981 · θ2 − 5192184 · θ + 1317423.

Notice that the total bitsize of (a0, . . . , am−1) is about the same as

the bitsize of q.

10



Proposed ANTS by-laws

...

By-law #691: any speaker whose presentation includes, in the

expert opinion of the Steering Committee, a distastefully excessive

number of low-resolution bitmaps, cartoons, or puns, pertaining to

formic acid, colony social behaviour, or any species of the order

Hymenoptera (but not including termites, which are members of

the order Blattodea and are more closely related to cockroaches),

shall be banned from ANTS for a period of not more than

twenty-four months; or in the case that the subsequent ANTS is

held in New Zealand, eighteen months.

...
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Arithmetic on θ-representations

How do we multiply elements of Z/qZ in θ-representation?

Suppose we want to multiply

u = 1414213562373095048801689 (mod q)

= 3740635 · θ3 + 3692532 · θ2 − 3089740 · θ + 4285386

by

v = 1732050807568877293527447 (mod q)

= 4629959 · θ3 − 4018180 · θ2 − 2839272 · θ − 3075767.
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Arithmetic on θ-representations

First multiply as polynomials in θ, using the relation θm = −1:

uv = 10266868543625 · θ3 − 37123194804209 · θ2

− 4729783170300 · θ + 26582459129078.

Problem: this is not a θ-representation.

The coefficients are too big.

We need a reduction algorithm to make the coefficients small

again, without changing the value modulo q.
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Arithmetic on θ-representations

Key idea: precompute a polynomial P(x) giving a nontrivial

representation of zero:

0 = P(θ) = −394297 · θ3 − 927319 · θ2 + 1136523 · θ − 292956.

Finding P(x) is equivalent to the problem of finding a short

nonzero vector in the lattice

Λ := {(a3, . . . , a0) ∈ Z4 : a3θ
3 + · · ·+ a0 = 0 (mod q)}.

In general, Minkowski’s theorem guarantees the existence of such a

vector with |ai | ≤ q1/m for all i .

(I used LLL to compute the example above.)
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Arithmetic on θ-representations

Now we want to subtract an appropriate multiple of

0 = P(θ) = −394297 · θ3 − 927319 · θ2 + 1136523 · θ − 292956

from

uv = 10266868543625 · θ3 − 37123194804209 · θ2

− 4729783170300 · θ + 26582459129078.

to make the coefficients small.

For technical reasons, we use a Montgomery-style modular

reduction algorithm.
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Arithmetic on θ-representations

Precompute an auxiliary prime r (around the size of q1/m) such

that P(θ) is invertible modulo r , and let J(θ) be its inverse.

In our example:

r = 42602761,

J(θ) = 17106162 · θ3 + 6504907 · θ2 + 30962874 · θ + 8514380,

so that

J(θ)P(θ) = −29688032222177 · θ3 + 32133728922904 · θ2

+ 19033763340253 · θ − 3695193078095

= 0 · θ3 + 0 · θ2 + 0 · θ + 1 (mod r)

= 1 (mod r).
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Arithmetic on θ-representations

Now we can compute the “Montgomery quotient”:

Q(θ) := (uv)J(θ) (mod r)

= 3932274 · θ3 − 14729381 · θ2 + 20464841 · θ − 11934644,

and then the “Montgomery remainder”:

uv − Q(θ)P(θ) = 42430773653843 · θ3 − 77314723813102 · θ2

+ 16990790539259 · θ + 33144862852478.

By construction, this last polynomial is divisible by r .

Dividing by r , we get

uv

r
= 995963 · θ3 − 1814782 · θ2 + 398819 · θ + 777998 (mod q).

Finally, we have found a θ-representation for uv/r .
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Arithmetic on θ-representations

Still need to remove the extraneous factor of r . Same issue as in

standard Montgomery reduction; various workarounds are possible.

One also needs algorithms for addition/subtraction in

θ-representation, and for conversions between standard and

θ-representation. All straightforward with the tools already

described.
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Thank you!
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