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“The obvious mathematical breakthrough would be the
development of an easy way to factor large prime
numbers”

— Bill Gates, 1995

David Harvey (joint work with Edgar Costa, NYU) Faster deterministic integer factorisation



Plan for talk

1. The integer factorisation problem

2. Summary of modern factoring algorithms

3. Detour: probabilistic vs deterministic algorithms

4. Strassen’s deterministic factoring algorithm

5. Our improvements to Strassen’s algorithm

6. Bostan–Gaudry–Schost algorithm (briefly)
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The integer factorisation problem

Input: a positive integer N.

Output: complete prime factorisation of N.

Example 1: Input is N = 91. Output is 7× 13.

Example 2 (RSA-768 challenge): Input is N =

1230186684530117755130494958384962720772853569595334792197
3224521517264005072636575187452021997864693899564749427740
6384592519255732630345373154826850791702612214291346167042
9214311602221240479274737794080665351419597459856902143413.

Output is

33478071698956898786044169848 36746043666799590428244633799
21269081770479498371376856891 × 62795263227915816434308764267
24313889828837938780022876147 60322838157396665112792333734
11652531743087737814467999489 17143396810270092798736308917.
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The integer factorisation problem

Simplest factoring algorithm is trial division:

For each k = 2, 3, 4, . . ., test whether N is divisible by k .

Stop when k reaches b
√
Nc.

Worst case complexity: O(N1/2) divisibility tests.

Size of input is O(logN) bits.

Complexity is exponential in the size of the input.

Only practical for very small N.
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Modern factoring algorithms

Three main factoring algorithms used in practice for large N:

I Quadratic sieve (QS)

I Number field sieve (NFS)

I Elliptic curve method (ECM)

I will not discuss algorithms for quantum computers in this talk.
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Modern factoring algorithms

The quadratic sieve (QS) factors N with heuristic complexity

exp
(

(1 + o(1))(logN)1/2(log logN)1/2
)

bit operations.

This is halfway between polynomial time

exp
(
C (logN)0(log logN)1

)
= (logN)C

and exponential time

exp
(
C (logN)1(log logN)0

)
= NC .

It is subexponential (better than NC for any C > 0) but
superpolynomial (worse than (logN)C for any C > 0).
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Modern factoring algorithms

The number field sieve (NFS) factors N with heuristic complexity

exp
(

((64/9)1/3 + o(1))(logN)1/3(log logN)2/3
)
.

This is a bit ‘closer’ to polynomial time than the quadratic sieve.

The record factorisation shown on the first slide was achieved using
the NFS.

In practice, for ‘hard’ composites, QS is the best choice for N up to
about 120 decimal digits, and NFS is best for N larger than this.
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Modern factoring algorithms

The elliptic curve method (ECM) finds the smallest factor p of
N with heuristic complexity

exp
(

(
√

2 + o(1))(log p)1/2(log log p)1/2
)
.

Here complexity measures the number of arithmetic operations on
integers of size logN.

ECM can find factors of reasonable size even if N if way too large
to apply QS/NFS.

Record is a 73-digit factor.
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Modern factoring algorithms

Theoretical problem with QS, NFS, ECM:

We can’t prove that they work.

Complexity bounds are heuristic, not rigorous.

In practice this is irrelevant — N gets factored anyway. The
factorisation, once found, is trivial to verify.

The complexity argument for ECM gets pretty close to a proof.
The missing ingredient is a proof that the interval

p − 2
√
p < n < p + 2

√
p

contains sufficiently many smooth integers (numbers whose prime
factors are all ‘small’). This is a very difficult problem in analytic
number theory.
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Modern factoring algorithms

What about algorithms with proven complexity bounds?

The class group relations method provably factors N with
expected running time

exp
(

(1 + o(1))(logN)1/2(log logN)1/2
)
.

This is subexponential. It has the same shape as the bound for
QS, but the o(1) is larger, making it uncompetitive in practice.

It is a probabilistic, Las Vegas algorithm: it requires a source of
random bits as input. The running time is a random variable with
finite expectation. The output is always correct.
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Modern factoring algorithms

What about deterministic algorithms — algorithms that are not
permitted a source of random bits?

Current state of knowledge:

All known deterministic factoring algorithms with rigorously
established complexity bounds have exponential running time.

(Example: trial division!)
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Detour: deterministic vs probabilistic algorithms

Why is there such a huge gap between probabilistic and
deterministic algorithms? Why is randomness so powerful?

My favourite example in number theory illustrating the power of
randomness is the problem of finding quadratic nonresidues.

This is a key ingredient in many algorithms in number theory, for
example finding square roots in finite fields.

Input: a prime p.

Output: a quadratic nonresidue modulo p, i.e. an integer b such
that x2 ≡ b mod p has no solution.

Example: for p = 7, the squares modulo 7 are {1, 2, 4}. The
output could be b = 3, or b = 5, or b = 6.
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Detour: deterministic vs probabilistic algorithms

Here is a very simple probabilistic algorithm:

Choose random 2 ≤ b ≤ p − 1. Test if b is a quadratic nonresidue.
If yes, we win. If no, start again with a new b.

Probability of success on any trial is 50%, since half the integers
are quadratic residues. So the expected number of trials is 2.

Testing whether b is a quadratic residue can be done in time
O((log p)C ).

(One method: use identity (b/p) ≡ b(p−1)/2 mod p. Another
method: use quadratic reciprocity for Jacobi symbols.)

Therefore we can find a quadratic nonresidue with expected
running time O((log p)C ).
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Detour: deterministic vs probabilistic algorithms

What is the best known deterministic algorithm for finding a
quadratic nonresidue?

Essentially, try each b = 2, 3, 4, . . . until we succeed.

The best we can prove is that the smallest nonresidue is O(pC+ε)
where C = 1

4
√
e
≈ 0.152.

This yields an exponential time algorithm!

(Under the extended Riemann hypothesis, we can prove that the
smallest nonresidue is O((log p)2), so we get a polynomial time
algorithm.)
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Strassen’s algorithm

For the rest of the talk I will discuss only deterministic factoring
algorithms with rigorously established complexity bounds.

(None of these are remotely competitive in practice with the
heuristic algorithms.)

The best complexity bounds in this case have the general shape

O(N1/4+o(1)).

I will start with the simplest variant, due to Strassen (1976).
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Strassen’s algorithm

Tools:

I Fast integer multiplication

I Fast polynomial multiplication over Z/NZ

I Fast product tree

I Fast multipoint evaluation
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Strassen’s algorithm

Let Mint(k) = cost of multiplying integers with k bits.

Primary school algorithm achieves Mint(k) = O(k2).

Current best result (Fürer 2007), very clever use of FFT:

Mint(k) = O(k log k 2log
∗(k)),

where log∗(x) is the iterated logarithm:

log∗(x) =

{
0 x < 1,

1 + log∗(log x) x ≥ 1.

This grows very slowly, so Mint(k) behaves essentially like k log k.
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Strassen’s algorithm

Let M(k) = cost of multiplying degree k polynomials over Z/NZ.

Kronecker substitution converts this to an integer multiplication
problem. For example, (2x2 + 3x + 5)(7x2 + 11x + 13) becomes

200030005 · 700110013 = 140043009400940065,

so the product is 14x4 + 43x3 + 94x2 + 94x + 65.

We need to leave enough ‘space’ for the coefficients of the
product, which are bounded by N2k.

Thus M(k) = O(Mint(k log(N2k))).

In our application k ≤ N, so we get simply

M(k) = O(Mint(k logN)).
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Strassen’s algorithm

Let a1, . . . , ak ∈ Z/NZ.

Consider the problem of computing the coefficients of

g(x) = (x − a1)(x − a2) · · · (x − ak) ∈ (Z/NZ)[x ].

The straightforward algorithm has complexity O(k2).

Better way: divide and conquer. We get a ‘product tree’:

(x − a1)(x − a2)(x − a3)(x − a4)

(x − a1)(x − a2)

(x − a1) (x − a2)

(x − a3)(x − a4)

(x − a3) (x − a4)
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Strassen’s algorithm

Let T (k) = cost of computing (x − a1) · · · (x − ak).

Ignoring complications from parity of k , we get

T (k) = 2T (k/2) + M(k/2),

and then we deduce that

T (k) = O(M(k) log k).

In other words we do O(M(k)) work for each of O(log k) levels of
the tree.
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Strassen’s algorithm

Let a1, . . . , ak ∈ Z/NZ, and let f ∈ (Z/NZ)[x ] of degree k .

Consider the problem of computing f (a1), . . . , f (ak).

This is a standard multipoint evaluation problem.

If we evaluate each f (ai ) separately, we get complexity O(k2).

Better way: divide and conquer. Let r = bk/2c. Let

f1(x) = f (x) mod (x − a1) · · · (x − ar ),

f2(x) = f (x) mod (x − ar+1) · · · (x − ak).

Then

f (ai ) =

{
f1(ai ) 1 ≤ i ≤ r ,

f2(ai ) r + 1 ≤ i ≤ k.

So we have reduced to two subproblems of half the size.
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Strassen’s algorithm

In other words, we build a product tree from bottom to top:

(x − a1)(x − a2)(x − a3)(x − a4)

(x − a1)(x − a2)

(x − a1) (x − a2)

(x − a3)(x − a4)

(x − a3) (x − a4)

and then reduce f down the tree from the root to the leaves:

f mod (x − a1)(x − a2)(x − a3)(x − a4)

f mod (x − a1)(x − a2)

f mod (x − a1) f mod (x − a2)

f mod (x − a3)(x − a4)

f mod (x − a3) f mod (x − a4)

Finally f (ai ) = f mod (x − ai ) for each i .
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Strassen’s algorithm

Let E (k) = cost of evaluating f (a1), . . . , f (ak), given the product
tree for a1, . . . , ak as input. Then

E (k) = 2E (k/2) + 2D(k/2),

where D(k/2) = cost of dividing a polynomial of degree k by a
monic polynomial of degree k/2, obtaining quotient and remainder.

Using Newton’s method for power series inversion (details
omitted!), we get

D(k) = O(M(k)).

Conclusion:
E (k) = O(M(k) log k).
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Strassen’s algorithm

Summary of results so far:

I Mint(k) = O(k log k 2log
∗(k)) (integer multiplication)

I M(k) = O(Mint(k logN)) (polynomial multiplication)

I T (k) = O(M(k) log k) (product tree)

I E (k) = O(M(k) log k) (multipoint evaluation)
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Strassen’s algorithm

Finally I can describe Strassen’s algorithm for factoring N.

I will explain only how to find one nontrivial factor.

Getting the complete factorisation within the same complexity
bound is not difficult (but slightly fiddly).

Let d = dN1/4e.

If N is composite, it must have at least one nontrivial factor ≤ d2.

In particular, gcd((d2)!,N) > 1.
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Strassen’s algorithm

Consider the polynomial

f (x) = (x + 1)(x + 2) · · · (x + d) ∈ (Z/NZ)[x ].

We can compute f (x) in time O(M(d) log d) (product tree).

Let

b0 = f (0) = 1 · 2 · · · · · d ,
b1 = f (d) = (d + 1)(d + 2) · · · (2d),

. . .

bd−1 = f ((d − 1)d) = ((d − 1)d + 1) · · · (d2),

We can compute all the bj (mod N) in time O(M(d) log d)
(multipoint evaluation), and we have

(d2)! = b0b1 · · · bd−1 (mod N).

David Harvey (joint work with Edgar Costa, NYU) Faster deterministic integer factorisation



Strassen’s algorithm

Now consider

t = gcd(N, b0 · · · bd−1 mod N).

If t = 1, then N must be prime.

If 1 < t < N, then we have recovered a nontrivial factor of N.

There still remains the possibility that t = N. This could occur for
example if N is a product of three primes near N1/3; then all these
primes will occur among the bj .
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Strassen’s algorithm

In this case, we build a product tree for the bj :

b0b1b2b3

b0b1

b0 b1

b2b3

b3 b4

Taking the GCD of each node with N, working from the root to a
leaf, we will find some bi such that gcd(bi ,N) > 1.

If 1 < gcd(bi ,N) < N, we have found a nontrivial factor.
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Strassen’s algorithm

It’s still possible that gcd(bi ,N) = N. This could occur if the
prime factors of N were all very close together.

But now recall

bi = f (id) = (id + 1)(id + 2) · · · (id + d).

We can build yet another product tree for this expression, and
apply the same GCD trick.

Now the prime factors have nowhere left to hide, and we are
guaranteed to find one.
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Strassen’s algorithm

Complexity analysis:

Computing the bi ’s dominates the algorithm, with complexity

O(M(d) log d) = O(M(N1/4) logN)

= O(Mint(N
1/4 logN) logN).

The contribution from everything else is negligible (O(d)
multiplications in Z/NZ, and O(log d) GCDs).

Conclusion: one can deterministically factor N in time

O(Mint(N
1/4 logN) logN).
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Improvements to Strassen’s algorithm

Now I will discuss our improvements to Strassen’s algorithm.

Key observation: if N is odd and composite, then it must have an
odd factor ≤

√
N.

It is easy to remove factors of 2 from N, so let us assume N is odd.
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Improvements to Strassen’s algorithm

Choose d = dN1/4/
√

2e and consider

f (x) = (x + 1)(x + 3)(x + 5) · · · (x + 2d − 1).

This has degree d , and

f (0)f (2d)f (4d) · · · f ((d − 1)2d) =
∏

1≤j<2d2

j odd

j .

The right hand side includes all odd integers ≤ N1/2.

We can run an algorithm almost exactly the same as Strassen’s.

The only difference in the complexity analysis is that d is reduced
by a factor of

√
2, so we have gained a constant factor of

√
2.
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Improvements to Strassen’s algorithm

We can push this further.

Suppose that N is not divisible by 2 or 3.

Let d = dN1/4/
√

12e and consider

f (x) = (x + 1)(x + 5)(x + 7)(x + 11) · · · (x + 6d − 5)(x + 6d − 1).

This has degree 2d . Evaluate at 2d points and multiply:

f (0)f (6d) · · · f ((2d − 1)6d) =
∏

1≤j<12d2

(j ,6)=1

j .

Working through the complexity analysis shows that we have saved
a factor of

√
3 over Strassen’s algorithm.
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Improvements to Strassen’s algorithm

What happens in general?

Suppose we include all primes ≤ B.

Let
Q =

∏
p≤B

p prime

p, R = φ(Q) =
∏
p≤B

p prime

(p − 1),

h(x) =
Q−1∏
i=1

(i ,Q)=1

(x + i).

For example, if B = 5, then Q = 2 ·3 ·5 = 30, R = 1 ·2 ·4 = 8, and

h(x) = (x+1)(x+7)(x+11)(x+13)(x+17)(x+19)(x+23)(x+29).

Note that deg h = R.
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Improvements to Strassen’s algorithm

Now assume N is not divisible by any primes ≤ B.

Put d = dN1/4/
√
QRe, and

f (x) = h(x)h(x + Q)h(x + 2Q) · · · h(x + (d − 1)Q).

Then deg f = Rd . Evaluate at Rd points and multiply:

f (0)f (Qd) · · · f ((Rd − 1)Qd) =
∏

1≤j<QRd2

(j ,Q)=1

j .

Savings over Strassen’s algorithm is√
Q/R =

∏
p≤B

p prime

√
p

p − 1
.
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Improvements to Strassen’s algorithm

For example:

B speedup =
√
Q/R

2 1.414
3 1.732
5 1.936

10 2.092
100 2.883

1000 3.514
10000 4.053

100000 4.523
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Improvements to Strassen’s algorithm

In fact, by Merten’s theorem, for large B we have√
Q/R =

∏
p≤B

p prime

√
p

p − 1
≈ eγ/2

√
logB.

where γ = 0.5772... is Euler’s constant.

So the improvement over Strassen’s algorithm does diverge to
infinity as B →∞!
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Improvements to Strassen’s algorithm

Unfortunately we are not free to choose B as large as we like.

One obvious restriction is that we need enough time to compute
h(x), which has degree R. So we need R no larger than N1/4.

For example, R ∼ N1/8 is quite safe.

But R grows quite rapidly with B. In fact

logR =
∑
p≤B

log(p − 1) ∼
∑
p≤B

log p ∼ B

by the Prime Number Theorem.

So we can only take B as large as O(logN).
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Improvements to Strassen’s algorithm

Conclusion: by choosing B a suitable multiple of logN, we can
speed up Strassen’s algorithm by a factor of√

log logN.
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The Bostan–Gaudry–Schost algorithm

Recall that Strassen’s algorithm has complexity

O(Mint(N
1/4 logN) logN).

Bostan–Gaudry–Schost (2007) show how to improve this to

O(Mint(N
1/4 logN)),

i.e. they save a factor of logN.
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The Bostan–Gaudry–Schost algorithm

I will not explain the Bostan–Gaudry–Schost algorithm.

The basic idea is that they use the same polynomial
f (x) = (x + 1) · · · (x + d), but they take advantage of the
structure of this polynomial and that the evaluation points lie in an
arithmetic progression.

Their approach actually saves a logarithmic factor in many other
contexts.

This can make a huge difference in practice. In my Ph.D. thesis, I
worked on algorithms for counting points on hyperelliptic curves
over finite fields. For a curve over Fp with p ∼ 1016, this can mean
a factor of 50 savings in running time!
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The Bostan–Gaudry–Schost algorithm

With a little effort, our improvements apply also to the
Bostan–Gaudry–Schost algorithm:

Theorem 1: An integer N > 1 can be deterministically factored in

O(Mint(N
1/4 logN/

√
log logN))

bit operations.

This is the best known bound for deterministic integer factorisation
that I am aware of.
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Thank you!
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