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Abstract

Canonical orders, introduced in the minimal model program for orders [CI05], are simultaneous
generalisations of Kleinian singularities k[[s, t]]G, G < SL2 and their associated skew group rings
k[[s, t]]∗G. In this paper, we construct minimal resolutions of canonical orders via non-commutative
cyclic covers and skew group rings. This allows us to exhibit a derived equivalence between minimal
resolutions of canonical orders and the skew group ring form of the canonical order in all but one
case. The Fourier-Mukai transform used to construct this equivalence allows us to make explicit, the
numerical version of the McKay correspondence for canonical orders noted in [CHI], which relates
the exceptional curves of the minimal resolution to the indecomposable reflexive modules of the
canonical order.

We assume throughout this paper that everything is over an algebraically closed base field k of
characteristic zero.

1 Introduction

There has been a proliferation of research on the McKay correspondence over the last couple of decades.
This beautiful theory links the theory of singularities in algebraic geometry with non-commutative
algebra and group theory. There are now many incarnations and generalisations of McKay’s original
correspondence, and we present yet another one here based on the concept of canonical orders introduced
in [CHI].

Let us review one of the classical versions of the McKay correspondence as it would be most rele-
vant for us. Consider a finite subgroup G < SL2 which has a natural action on the power series ring
k[[s, t]]. Then Spec k[[s, t]]G is a Kleinian (or canonical surface) singularity and the McKay correspon-
dence states that there is a bijection between the set of exceptional curves in a minimal resolution for
Spec k[[s, t]]G and the set of indecomposable reflexive k[[s, t]]G-modules not isomorphic to k[[s, t]]G.
It is customary now, following Kapranov-Vasserot [KV] (and presumably Verdier), to view this “nu-
merical McKay correspondence” as a consequence of a derived equivalence as follows. Firstly, note
that the order A := k[[s, t]] ∗ G is reflexive Morita equivalent to k[[s, t]]G so, in particular, has the
same number of indecomposable reflexive modules. Van den Bergh [V] and others interpret A as a
non-commutative resolution of Spec k[[s, t]]G since it has global dimension two (which suggests smooth)
and the order A has centre k[[s, t]]G and is Azumaya away from the closed point (which suggests bira-
tional to k[[s, t]]G). Kapranov-Vasserot show there is a derived equivalence between A and the minimal
resolution of Spec k[[s, t]]G.

In [CI05], a version of Mori’s minimal model program was introduced for orders on surfaces. As in
the Mori program, there are non-commutative analogues for canonical singularities dubbed, canonical
orders (the definition of which is reviewed in § 2). They include as examples, Kleinian singularities
k[[s, t]]G, G < SL2 as well as their associated skew group rings k[[s, t]]∗G. Unlike other non-commutative
generalisations of Kleinian singularities, there is a notion of a minimal resolution for a canonical order
B. This minimal resolution is a certain order on a resolution of the centre of B (see section 4 for the
definition). Naturally, we used the minimal resolution in [CHI] to study these orders. We showed in
particular, that any canonical order is reflexive Morita equivalent to another canonical order of the form
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A := εk[[s, t]] ∗ G′ where G′ is a finite group and ε is a central primitive idempotent of k[[s, t]] ∗ G′.
We interpret this order A as a non-commutative resolution of the original canonical order. It is thus
natural to ask if A is derived equivalent to the minimal resolution of the original order. In this paper,
we show that this is true in all except possibly one case.

Theorem 1.1 Given a canonical order B of any ramification type other than DLn (see definition 2.3),
there is a reflexive Morita equivalent order of the form A = εk[[s, t]]∗G′ such that A is derived equivalent
to the minimal resolution of B.

The key to proving this theorem lies in studying the minimal resolution of a canonical order. The
ramification data of the resolution is well-known from [CHI], but up till now, nothing else was known
about the resolution. We remedy this by showing that minimal resolutions can always be constructed
as non-commutative cyclic covers (as introduced in [C]). In the process, we see that in most cases,
minimal resolutions of canonical orders can also be realised as skew group rings. This allows one to
use an equivariant version of the classical “commutative” McKay correspondence to prove the above
theorem in all cases except those of ramification type Ln and DLn. To prove the theorem in the case
Ln, we use the description of the minimal resolution as a non-commutative cyclic cover and construct
explicitly, the kernel of the Fourier-Mukai transform which exhibits the desired derived equivalence. We
unfortunately, do not know how to handle the case DLn.

The “derived” McKay correspondence we use is different from the one in [V] since the minimal
resolution of an order is non-commutative. When the minimal resolution is a skew group ring, it
is almost a special case of Kawamata’s equivariant derived McKay correspondence [Kaw]. Hence, the
content of the results here, is that canonical orders provide interesting examples of derived equivalences.
The derived equivalence for type Ln seems to be quite different from other known examples.

The next natural question to ask is whether or not one can extract a numerical form of the McKay
correspondence for canonical orders using theorem 1.1. In [CHI] already, such a numerical McKay
correspondence was observed and can be roughly stated as follows. If B denotes a canonical order, the
set of indecomposable reflexive B-modules can be partitioned into certain orbits containing one or two
modules (see definition of permissible modules in [CHI, section 8]). Then [CHI, theorem 8.6] the number
of these orbits is one more than the number of exceptional curves in a minimal resolution of B. In this
paper, we explain this numerical McKay correspondence for types other than DLn by using the derived
equivalence of theorem 1.1. As a result, we will actually exhibit a bijection between the exceptional
curves and the orbits of indecomposable reflexives not containing B. Furthermore, it allows us to give
a more enlightening version of the numerical McKay correspondence in terms of the ramification type
of the exceptional curves (see the paragraph preceding proposition 4.4 for definitions).

Theorem 1.2 Let E1, . . . , Er be the exceptional curves of the minimal resolution of a canonical order
B. The number of indecomposable reflexive B-modules up to isomorphism is n0 + n1 + . . . + nr where

i. n0 = 2 if B is of type A1,2,ζ , BLn or Bn and is 1 otherwise (see proposition 6.10 for a more
uniform explanation).

ii. ni = 1 if Ei is of type 0, I1,e, C2 or X2.

iii. ni = 2 if Ei is of type I2,e.

In section 2 we remind the reader of the definition of terminal and canonical orders in terms of
ramification data. To simplify the treatment and reduce the reliance on [CHI], we have opted for a
non-standard definition of canonical orders. Section 3 is devoted to constructing terminal and canonical
orders as skew group rings in the complete local case. We define minimal resolutions of canonical orders
in section 4 and examine when they can also be constructed via skew group rings. The next two sections
describe an equivariant version of the derived McKay correspondence and a procedure for extracting the
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numerical McKay correspondence in the cases of interests. Section 7 shows how minimal resolutions can
all be described, up to Morita equivalence, as non-commutative cyclic covers. The last section forms a
case-by-case analysis depending on the ramification type of the canonical order. We construct for each
type, the minimal resolution as a non-commutative cyclic cover and, where possible, as a skew group
ring. In the cases where there is a description via a skew group ring, we apply the results concerning
the equivariant derived McKay correspondence in sections 5 and 6 to prove theorem 1.1 and elucidate
the numerical McKay correspondence as discovered in [CHI].

Acknowledgements: I would like to thank Colin Ingalls and Paul Hacking for helpful discussions.
In particular, I learnt about Kawamata’s equivariant derived equivalence from Paul Hacking.

2 Ramification of terminal and canonical orders

Terminal and canonical orders are certain orders on surfaces which arise naturally in the minimal model
program for orders over surfaces as studied in [CI05]. They are defined essentially in terms of certain
geometric invariants called ramification data. In this section, we review the ramification data of terminal
and canonical orders. Full details of the theory can be found in [CI05] and [CHI], and we revise here
but the bare minimum.

We study the complete local case first. Let R be a noetherian complete local normal domain of
dimension two. An R-order A in a central simple k(R)-algebra is normal [CI05, definition 2.3] if it is
reflexive as an R-module and for every prime divisor C ⊂ Spec R we have that

i. the localisation at C, AC is hereditary.

ii. the Jacobson radical rad AC is a principal left and right ideal.

We note here that maximal orders are normal and skew group rings tend to be normal too. The
condition is also stable under étale base change. The importance of normality for us is the following
result.

Proposition 2.1 Given a normal R-order as above and a prime divisor C ⊂ Spec R, then k̃(C) :=
Z(AC/radAC) is a cyclic extension of k(C) of the form Ln where L is a cyclic field extension of k(C).

Above, Z denotes the centre of a ring as usual. The ramification index of A at C is

eC := dimk(C) k̃(C).

This gives us the primary ramification of the order. We say A ramifies at C if eC > 1 and say
the corresponding curve is a ramification curve. The ramification data are the centre Z, the set of
ramification curves {C} and the corresponding field extensions k̃(C)/k(C).

Note that the extension k̃(C)/k(C) corresponds to a cyclic cover D̃C/DC of smooth (but possibly
reducible) curves. In the complete local case, this cover is determined by its ramification and, following
[AdJ], we will refer the ramification of D̃C/DC to be secondary ramification of the order A. Thus the
ramification data reduces to the primary and secondary ramification data.

Definition 2.2 ([CI05, definition 2.5]) A normal R-order A is terminal if its ramification data satisfies
the following conditions.

i. R is smooth.

ii. the ramification curves are smooth and cross normally (if at all).

iii. secondary ramification occurs only where ramification curves intersect.
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iv. if there are two ramification curves C1, C2 with ramification indices e1, e2 then, (swapping indices
if necessary) we have e1|e2 and the secondary ramification of both curves is e1 at their point of
intersection.

In other words, A is terminal if we can find coordinates u, v ∈ R such that R ' k[[u, v]] where further-
more i) A is unramified away from the normal crossing lines uv = 0, ii) there are integers e, n ≥ 1 such
that the ramification indices at u = 0 and v = 0 are e and ne respectively, and finally iii) the secondary
ramification indices of both lines is e at (u, v) = (0, 0).

Definition 2.3 A normal R-order A is canonical if it has one of the ramification data in the table
below.

type R ramification curves eC ep

A1,2,ξ k[[u, v]] u = 0 2e e
v = 0 2e e

BLn k[[u, v]] v2 = u2n+1 2 1
Bn k[[u, v]] v = un 2 1

v = −un 2 1
Ln k[[u, v]] v = un+1 2 2

v = −un+1 2 2
DLn k[[u, v]] u = 0 2 2

v2 = u2n−1 2 2
BDn k[[u, v]] u = 0 2 2

v = un−1 2 2
v = −un−1 2 1

An,ξ k[[u, v, w]]/(uv − wn+1) w = 0 = u e e
w = 0 = v e e

A1
n, D1

n, E1
6,7,8 klein sing k[[x, y]]G, G < SL2 ∅

In the table above, R is the centre of the order, the ramification curves are listed for each type
with associated primary ramification indices under eC and secondary ramification at the closed point
p ∈ Spec R listed under ep. The last line of the table represents orders on a Kleinian singularity
which are unramified (in codimension one). The original definition of canonical orders is given in [CI05;
page 444] and is based on the concept of discrepancy for orders. That it is equivalent to the definition
above is a theorem in [CHI; theorem 6.5].

3 Skew group rings: local case

In this section and the next, we address the question: given terminal or canonical ramification data, how
do you construct a skew group ring with that ramification data? We give here a recipe we learnt from
work of Artin [A86, section 5] and Le Bruyn-Van den Bergh-Van Oystaeyen [LVV, section 5], though
presumably it was known in some form or another beforehand. More details are also also reviewed in
[CHI, section 4]. The recipe works effectively when the centre is a complete local ring. The construction
in this case, is given in this section. The next section will deal with constructing minimal resolutions
of canonical orders via skew group rings.

Before reviewing the recipe, we note that in the cases of interest, the Brauer group of the centre
is trivial, so terminal orders are determined up to Morita equivalence by their ramification data (see
theorem 7.3 for a precise statement as well as [CI05, theorem 2.12 and corollary 2.13]). Hence, from
the point of view of non-commutative algebraic geometry, where geometric objects manifest themselves
via their category of quasi-coherent sheaves, constructing a terminal order amounts to constructing an
order with the same ramification data. Unfortunately, a similar uniqueness result does not hold for
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canonical orders. Nevertheless, in the complete local case we know by [CHI, lemma 3.2], that they
are all reflexive Morita equivalent to a (direct factor of a) skew group ring εk[[s, t]] ∗G′ (ε a primitive
central idempotent) where G′ is a group determined uniquely by ramification data. Furthermore, [CHI,
lemma 3.2] also shows this skew group ring has the same ramification data as the original canonical
order and may be thought of as a “non-commutative resolution” of the order.

The key to the recipe lies in finding a smooth Galois cover of the surface with the same ramification
as the primary ramification data. To be more precise, let us restrict our attention for the rest of this
section to the complete local case and let R be a normal noetherian complete local domain of dimension
two. Consider the ramification data {R, eC , ep} of a terminal or canonical order as listed in section 2.
By [CHI, proposition 5.1], there is a Galois cover k[[s, t]]/R whose ramification indices coincide with
the eC ’s. Let G be the Galois group of k[[s, t]]/R.

Example 3.1 Case of terminal ramification.

Consider the ramification data R = k[[u, v]], the two ramification curves are u = 0, v = 0 with respective
ramification indices e, ne and secondary ramification e for both these curves at (u, v) = (0, 0). Up to
isomorphism, terminal orders have such ramification data. Let ζ ∈ k be a primitive ne-th root of unity.
In this case, we let

G := 〈σ̄, τ̄ |σ̄e = 1 = τ̄ne, σ̄τ̄ = τ̄ σ̄〉 ' Z /eZ×Z /neZ
act on k[[s, t]] by σ̄ : s 7→ ζns, t 7→ t and τ̄ : s 7→ s, t 7→ ζt. We note that k[[s, t]]G = k[[u, v]] if we
identify u = se, v = tne. Hence, k[[s, t]]/R is the Galois cover with the above ramification data.

Returning to the general setup, we need a way to incorporate the secondary ramification data.
Consider now a central extension of G by the group µe of e-th roots of unity.

1 −→ µe −→ G′ −→ G −→ 1

Such extensions are classified by H2(G, µe). In the applications, e will be the largest value of ep. We
can extend the G-action on k[[s, t]] to G′ by letting µe act trivially. This means that the skew group ring
k[[s, t]] ∗G′ contains a central subalgebra kµe. Let ρ be a generator for µe. Now kµe ' k× k× . . .× k,
the product of e copies of the field k. It contains e primitive idempotents. For example

ε =
1
e
(ρe−1 + ζnρe−2 + . . . + ζn(e−1)) (1)

is the idempotent corresponding to the factor where ρ acts as the primitive e-th root of unity ζn. Now
ε is also a central idempotent of k[[s, t]] ∗G′ so we may consider the direct factor

εk[[s, t]] ∗G′ ' k[[s, t]] ∗G′

(ρ− ζn)

which must also have global dimension two. This algebra can also be written as a cross product
algebra. From this viewpoint, we thus see that if α ∈ H2(G, µe) corresponds to the extension G′ then,
εk[[s, t]] ∗G′ depends only on the image β of α in H2(G, k∗). Now proposition 4.9 of [A86] shows that
β ∈ H2(G, k∗) determines the Brauer class of the central simple algebra εk((s, t)) ∗ G′ and hence, the
secondary ramification of εk[[s, t]] ∗G′. To simplify terminology, we shall refer to direct factors of skew
group rings as skew groups rings also.

Example 3.2 Case of terminal ramification.

We continue the notation in example 3.1. We compute easily enough that H2(G, k∗) ' µe for G =
Z /eZ×Z /neZ. We let G′ be a central extension corresponding to a generator of the cyclic group
H2(G, k∗). In fact, we may assume

G′ = 〈σ, τ, ρ|σe = 1 = τne = ρe, σ τ = ρτ σ, ρ σ = σ ρ, ρτ = τρ〉
and the natural map G′ −→ G sends σ 7→ σ̄, τ 7→ τ̄ , ρ 7→ 1.
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Proposition 3.3 Let G′ be the central extension of Z /eZ×Z /neZ by µe defined above. Let G′ act on
k[[s, t]] as in example 3.1. Then εk[[s, t]]∗G′ ' k[[s, t]]∗G′/(ρ−ζn) is a terminal order with ramification
data:

i. the centre is R = k[[u, v]] where u = se, v = tne.

ii. the ramification curves are u = 0, v = 0 with corresponding ramification indices eC = e, ne.

iii. the secondary ramification of both curves is e at the node u = 0 = v.

Proof. The theory of crossed product algebras shows that A = εk[[s, t]] ∗ G′ is an order with centre
k[[u, v]] which is unramified away from uv = 0. We check the ramification at u = 0 first which involves
computing the residue ring extension AP /rad AP where P = (u). Now s is normal and nilpotent in
A/(u) so lies in radAP . Furthermore, A/(s) ' εk[[t]] ∗ G′ so the fact that εk((t)) ∗ G′ is semisimple
ensures

AP /radAP = εk((t)) ∗G′.

which has centre k((tne))[tn σ−1] which is totally ramified over k(P ) = k((tne)) with ramification index
e as was to be shown. Observe also that rad AP is principal generated by the normal element s.

Similarly, at P = (v) we find
AP /rad AP = εk((s)) ∗G′.

which has centre k((s))[sτ−1, τ e] ' k((s))[sτ−1]n. This has degree ne over k(P ) = k((s)) and the
secondary ramification index is e. Again we see that rad AP is principal. Since A is Azumaya away
from uv = 0, we see that A is also a normal order.

The above proposition constructs for each ramification type of a terminal order, a skew group ring
with that ramification. The following well-known proposition is useful for studying skew group rings.

Proposition 3.4 Let Z be an affine scheme and G be a finite group acting faithfully on OZ and
transitively on the connected components of Z. Let Y ⊂ Z be a connected component and D ≤ G be
the corresponding decomposition group. Let G′ be a central extension of G by µe, D′ the corresponding
extension of D and ε ∈ kµe be a primitive idempotent. Then

εOZ ∗G′ ' (εOY ∗D′)n×n

where n = [G : D].

Proof. Since G acts transitively on connected components, OZ is a direct product of copies of OY. If
{εi} are the characteristic functions of the connected components, then there is a Peirce decomposition
of εOZ ∗G′ corresponding to the idempotents {εi}. We omit the elementary verification that this gives
the isomorphism stated in the proposition.

The above recipe was used in [CHI] to construct a skew group ring εk[[s, t]] ∗ G′ for each of the
ramification types of a canonical order. We merely list the answer here by specifying G′ and its action
on k[[s, t]]. It turns out that in almost all cases, the extension G′ of G arises in the following manner.
Suppose there is a subgroup H < G such that G := G/H ' Z /neZ×Z /eZ. Then, as we have already
noted in the terminal case, H2(G, k∗) ' Z /eZ. By Kummer theory, there is a 2-cocycle α ∈ H2(G, µe)
which maps onto a generator for H2(G, k∗). We then obtain a commutative diagram with exact rows

1 // µe

²²

// G′

²²

// G

²²

// 1

1 // µe // G
′ // G // 1
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where the bottom row comes from the cocycle α and the top row is induced from the bottom by pullback.
In brief, the skew group ring εk[[s, t]] ∗G′ comes from an element of H2(G, k∗) which is the image of a
generator of H2(G, k∗) ' Z /eZ.

The next theorem was proved in [CHI, section 8] and can also be verified using proposition 3.4 and
the local computation in proposition 3.3.

Theorem 3.5 The skew group ring εk[[s, t]] ∗ G′ with G′ described in the table below is a canonical
order.

In the table below, we describe G via listing generators as matrices in k2×2. The action of G on
k[[s, t]] will be the natural linear action. In all cases except Ln, we shall specify the skew group ring
εk[[s, t]] ∗G′ by writing down the subgroup H < G above.

type G order of ζ H e

A1,2,ζ

(
ζ 0
0 1

)
,

(
1 0
0 ζ

)
2e

(−1 0
0 −1

)
e

BLn

(
ζ 0
0 ζ−1

)
,

(
0 1
1 0

)
2n + 1

(
ζ 0
0 ζ−1

)
1

Bn

(
ζ 0
0 ζ−1

)
,

(
0 1
1 0

)
2n

(
ζ 0
0 ζ−1

)
1

Ln

(
ζ 0
0 ζ−1

)
,

(
0 1
1 0

)
2n + 2 see below 2

DLn

(
ζ 0
0 ζ−1

)
,

(
0 1
−1 0

)
,

(−1 0
0 1

)
4n− 2

(
ζ 0
0 ζ−1

)
,

(
0 1
−1 0

)
2

BDn

(
ζ 0
0 ζ−1

)
,

(
0 1
−1 0

)
,

(−1 0
0 1

)
4n− 4

(
ζ 0
0 ζ−1

)
,

(
0 1
−1 0

)
2

An,ζ

(
ζ 0
0 ζ−1

)
,

(
1 0
0 ζn+1

)
(n + 1)e

(
ζe 0
0 ζ−e

)
e

A1
n, D1

n, E1
6,7,8 G < SL2 G 1

The group G′ in the case Ln is the dihedral group of order 8n + 8, that is,

G′ = 〈σ, τ |σ4n+4 = τ2 = 1, τ σ = σ−1 τ 〉 .
Note that Z(G′) = 〈σ2n+2 〉 ' µ2 and G′/Z(G′) ' G so G′ is indeed a central extension of G by µ2.
Also, the idempotent

ε =
1
2
(1 + σ2n+2).

4 Skew group rings: minimal resolutions

In this section, we recall the definition of a minimal resolution of a canonical order and give conditions
for when the recipe in the previous section may be used to construct minimal resolutions as skew group
rings.

Let Z = Spec R where R is a noetherian complete local normal domain and f : Z̃ −→ Z be a proper
birational morphism. An order Ã on Z̃ is terminal if it is terminal complete locally at every closed point
and furthermore, it is maximal at the generic point of every exceptional curve. In cases of interest, we
assume f to be a rational resolution in the sense that R1f∗OZ̃ = 0.

Terminal orders on rational resolutions are uniquely determined by their ramification data in the
following sense.

Proposition 4.1 Let Z̃ −→ Spec R be a rational resolution. If Ã, Ã
′
are terminal orders on Z̃ with the

same ramification data, then they are Morita equivalent.
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Proof. We know from [A87, lemma 1.4] that the Brauer group Br Z̃ = 0 is trival so the central simple
algebra Ã⊗Z̃k(Z̃) is determined up to Morita equivalence by its ramification data. Replacing Ã, Ã

′
by

matrix algebras Ã
n×n

, (Ã
′
)m×m for appropriate m,n, we may assume Ã⊗Z̃k(Z̃) = Ã

′⊗Z̃k(Z̃) =: Q.
We know that Ã, Ã

′
are maximal orders away from a finite set of curves C1, . . . , Cr which are

transverse to the exceptional fibre. Also, from definition 2.2, we see that the Ci are mutually disjoint.
Consider the localisations ÃCi , Ã

′
Ci

at the generic point of Ci. We know ÃCi ' Ã
′
Ci

either by [CI05,
proposition 2.11] (or rather, its proof), or by Artin-de Jong’s descent theory argument [AdJ, section 1.2].
The Skolem-Noether theorem implies that we can find invertible elements qi ∈ Q such that Ã

′
Ci

=
q−1
i ÃCi qi. Let Pi be the reflexive hull of Ã qi Ã

′ ⊂ Q (as an OZ̃-module). Note that Pi is an (Ã, Ã
′
)-

bimodule and that away from all the Cj we have

Ã
′
= End Ã Pi, Ã = End Ã

′ Pi (∗)

since Ã, Ã
′

are maximal there. Also (*) holds locally at Ci by construction. We may glue the Pi to
obtain a reflexive OZ̃-module which is equal to Pi locally at Ci and is Pi0 elsewhere, for some i0. Since
the gluing takes place inside Q, it is clear that P is still an (Ã, Ã

′
)-bimodule and

Ã
′
= End Ã P, Ã = End Ã

′ P.

Finally, P is locally projective as an Ã-module and an Ã
′
-module, so is a Morita bimodule exhibiting

the desired Morita equivalence.

Consider now a canonical order A with centre R. By [CI05, proposition 3.15], R is a log terminal
surface singularity and hence, a rational singularity. Let f : Z̃ −→ Spec R be a proper birational
morphism which, we note is a rational resolution if Z̃ is smooth. We let f#A to be a reflexive order on
Z̃ prescribed at codimension points by the following conditions.

i. If C is a non-exceptional curve then (f#A)C = (f∗A)C .

ii. If C is exceptional then (f#A)C is any maximal order containing (f∗A)C .

Needless, to say f#A is not unique, but the choices corresond precisely to the choices of maximal
orders containing f∗A at the various exceptional curves so, in particular, f#A exists. Also, all choices
have the same ramification data. Indeed, the ramification of f#A at any non-exceptional curve is the
same as that of A, while the ramification at an exceptional curve E, is just the ramification of the
central simple algebra A⊗R k(R) at E. The condition that f#A is terminal is thus independent of this
choice of order. Furthermore, the argument in proposition 4.1 can be used to show that the various
choices for f#A are all Morita equivalent.

Definition 4.2 A terminal resolution of a canonical order A with centre R is a rational resolution
f : Z̃ −→ Spec R and a choice of order Ã := f#A as above which is terminal. We say that such a
terminal resolution is minimal (or is a minimal resolution) if given any other terminal resolution with
centre say Z̃

′
, there exists a morphism Z̃

′ −→ Z̃.

Proposition 4.1 shows that minimal resolutions of canonical orders are unique up to Morita equiva-
lence so we shall speak of the minimal resolution. Also, existence holds by

Proposition 4.3 ([CI05, proposition 3.17]) Any canonical order has a minimal resolution.

The Artin-Mumford sequence provides an easy recipe for computing the ramification of f#A from
the ramification of A (see [CK, p.159-160] for an explanation). In particular, it is easy to compute the
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ramification data of the minimal resolution of a canonical order. This was given in [CHI] and, for the
convenience of the reader, the answer will be repeated in section 8 when we perform the case-by-case
analysis.

We now address the question of constructing the minimal resolution of canonical order via skew
group rings. To this end, let us consider terminal ramification data R = {Z̃, eC , ep} on Z̃ where eC are
the primary ramification indices on curves and ep are the secondary ramification indices at intersection
points of ramification curves. In the case of a minimal resolution of a canonical order, we know from
[CHI, theorem 6.2] that the exceptional curves occur in one of the following types.

Type 0 The exceptional curve E is disjoint from the ramification curves.

Type Ia,b The ramification index at the exceptional curve E is eE = b. There exist two disjoint
ramification curves U, V intersecting E with intersection multiplicity 1 and ramification indices eU =
eV = ab. There are no other ramification curves intersecting E. We allow b = 1 in this case.

Type Cn There is no ramification along the exceptional curve E i.e. eE = 1. There is only one
ramification curve U intersecting E and we have E.U = 2 and eU = n.

Type Xe There is no ramification along the exceptional curve E. There are only two ramification
curves U, V intersecting E. Furthermore, U ,V intersect each other and U.E = V.E = 1, eU = eV = e.

The notation was chosen using the fact that the letters I, C,X look like the configuration of ramifi-
cation curves.

Proposition 4.4 Consider terminal ramification data R = {Z̃, eC , ep} on Z̃ as above. Suppose there
exists a smooth Galois cover X̃ of Z̃ with Galois group G ' Z /neZ×Z /eZ such that the ramification
indices of X̃ / Z̃ are given by the eC . Finally, suppose that any (irreducible) exceptional curve E ⊂ Z̃ is
one of the following types.

i. E is type 0.

ii. E is type In,e.

iii. E is type C2 and n = 2, e = 1.

iv. E is type Ie,1 and n = 1.

Let G
′

be a central extension of G corresponding to a generator of H2(G, k∗). Then εOX̃ ∗G
′

is a
terminal order with ramification data given by R. Here ε ∈ kµe is as usual, a primitive idempotent such
that a generator ρ for µe acts as a primitive e-th root of unity in εkµe (see section 3 equation (1)).

Proof. This follow from the local computations of propositions 3.3 and 3.4.

This will allow us to construct the minimal resolutions of canonical orders via skew group rings in
every case except Ln and DLn. Both these cases have exceptional curves of type Xe. The more serious
obstruction though, is that, they do not have smooth Galois covers whose ramification indices match
the ramification of the terminal resolution.

5 Equivariant derived McKay correspondence

When the minimal resolution of a canonical order is a skew group ring, we may use an equivariant
version of the derived McKay correspondence to study it. This correspondence is essentially due to
Kawamata and I thank Paul Hacking for bringing my attention to it as well as providing a short proof.
We will approach it from the point of view of non-commutative algebra to obtain the version most
convenient for us.
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To prove Kawamata’s derived equivalence [Kaw], we will use the classical non-equivariant version
and so pause a moment to review it. We follow the terminology and setup in [BKR]. Let H < SL2

be a finite subgroup acting naturally on W := Spec k[[s, t]] and X := W/H be the corresponding
canonical surface singularity. Let X̃ denote the minimal resolution of X which can also be interpreted
as the equivariant Hilbert scheme H −Hilb W as follows. Recall an H-cluster on W is an H-invariant
0-dimensional closed subscheme T ⊂ W such that the H-module OT ' kH. They are parametrised
by the scheme H − Hilb W . There is a corresponding universal H-cluster W̃ which is a finite cover
of X̃. Then Kapranov-Vasserot’s derived McKay correspondence [KV, §1.4 theorem] (also known to
Gonzales-Sprinberg-Verdier) states that OW̃ is a tilting bundle inducing a derived equivalence between
OX̃ and OW ∗H. By this we mean there is an equivalence of the bounded derived categories of coherent
modules Db

c(OX̃) ' Db
c(OW ∗H).

Proposition 5.1 (Kawamata) Let G′ be a finite group acting linearly on W = Spec k[[s, t]] via the group
homomorphism φ : G′ −→ GL2. Suppose H is a normal subgroup of G′ such that φ(H) ⊂ SL2. Write
X := W/H, X̃ := H−Hilb W and W̃ for the universal H-cluster. Then M := OX̃ ∗(G′/H)⊗X̃OW̃ is a
tilting bundle on OX̃ ∗(G′/H) which induces a derived equivalence between OX̃ ∗(G′/H) and EndM =
OW ∗G′.
Proof. We know that OW̃ is a tilting bundle on X̃ and that OW ∗H = EndX̃OW̃. Note that the G′-
action on W induces G′-actions on W̃, X̃ which in turn induce a G′/H-action on X̃. Now OX̃ ∗(G′/H)
is flat over OX̃ so adjoint associativity gives

RHomOX̃ ∗(G′/H)(M, N) = RHomX̃(OW̃, N). (2)

If we let N range over arbitrary OX̃ ∗(G′/H)-modules and use the fact that O⊥
W̃

= 0 in Db
c(X̃), then

we deduce that M⊥ = 0. To show that M is a partial tilting bundle and compute its endomorphism
algebra, first note that

M =
⊕

ḡ∈G′/H

ḡ ⊗OW̃ .

If we lift ḡ to g ∈ G′,then since W̃ −→ X̃ is G′-equivariant we have the following isomorphism of left
OX̃-modules

ḡ ⊗OW̃ ' (ḡ−1)∗OW̃ ' (g−1)∗OW̃ ' OW̃ .

Hence (2) gives the following isomorphism of right modules over EndX̃OW̃ = OW ∗H.

RHom(M,M) = RHom(OW̃,M) '
⊕

ḡ∈G′/H

OW ∗H (3)

In particular, we see that M is a tilting bundle. Note that OW ∗G′ acts on the right of M as follows.
First OW acts on OW̃ canonically. Given g, g′ ∈ G′, r ∈ OW̃ we define the G′-action by

(g′H ⊗ r)g := g′gH ⊗ (g−1)∗(r).

Note that if J ⊆ G′ is a set of coset representatives for H, then identifying the summands of OW ∗G′ =
⊕j∈J OW ∗Hj with those in (3), we see that End M = OW ∗G′ as desired.

We will apply the proposition to the groups G′ arising in theorem 3.5. Accordingly, we consider
the following setup. Let G ⊂ GL2 act on W = Spec k[[s, t]]. Let H be a normal subgroup G which is
actually contained in SL2 and write G := G/H. We consider a central extension G

′
of G by some µe.

As we have seen, pull-back induces a central extension G′ of G by µe we still have H ' ker(G′ −→ G
′
).

We may and will thus consider H as a subgroup of G′. Now both OX̃ ∗G
′
and OW ∗G′ contain kµe in

their centres so any primitive idempotent ε of kµe gives a central idempotent of OX̃ ∗G
′
and OW ∗G′.
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Corollary 5.2 The derived equivalence of the previous proposition induces a derived equivalence be-
tween εOX̃ ∗G

′
and εOW ∗G′

6 Numerical McKay correspondence

In this section we see how the equivariant derived equivalence of the previous section gives rise to the
numerical McKay correspondence observed case by case for canonical orders. Unfortunately, the result
does not cover all the canonical orders.

Our setup for this section will be as follows. Let G ⊂ GL2 act on W = Spec k[[s, t]]. Let H be a
normal subgroup of G which is actually contained in SL2. Hence X := W/H will be a commutative
canonical singularity and we let X̃ be its minimal resolution. Suppose that G := G/H ' Z /neZ×Z /eZ
and let εOW ∗G′ be the skew group ring constructed from an extension G′ corresponding to a generator
of H2(G, k∗) as in section 3. Recall that H can also be treated as a normal subgroup of G′ and we set
G
′
:= G′/H. As before, we let W̃ be the universal H-cluster on X̃.
One way to extract the classical numerical McKay correspondence from the derived version is to

decompose the tilting bundle. We will need this decomposition in the classical case which follows from
Artin-Verdier theory [AVer] as follows. Below we let E denote the extended set of exceptional curves
consisting of all the irreducible exceptional curves of X̃ together with the divisor 0. Also, when we say
two curves on X̃ are transverse, we will mean they intersect each other in a point with multiplicity one.

Theorem 6.1 ([AVer, lemma 1.10]) For each exceptional curve E ⊂ X̃ we pick a transverse curve C
which is disjoint from all the other exceptional curves. We let F (E) denote the universal extension
defined by the exact sequence

0 −→ Ext1
X̃
(O(C),OX̃)⊗X̃ OX̃ −→ F (E) −→ O(C) −→ 0.

By default we also set F (0) = OX̃. The indecomposable summands of OW̃ are precisely the F (E) as E
ranges over E.
We will use the notation F (E) throughout the rest of the paper.

Note that G acts on E by pull-back of sheaves and each G-orbit of exceptional curves corresponds
to an exceptional curve on the centre of εOX̃ ∗G′. We have the following corollary to proposition 5.1.

Corollary 6.2 Let I ⊂ E be a set of representatives, one from each G-orbit of E. The indecomposable
reflexive εOW ∗G′-modules are the direct summands of

HomεOX̃ ∗G
′(εOX̃ ∗G

′⊗X̃OW̃, εOX̃ ∗G
′⊗X̃F (E))

where E ranges over I.
Proof. Note that εOW ∗G′ is global dimension two and finite as a module over a complete local
noetherian ring. Hence the indecomposable reflexive εOW ∗G′-modules are just the direct summands
of εOW ∗G′. Now proposition 5.1 shows that these correspond, via the functor

HomεOX̃ ∗G
′(εOX̃ ∗G

′⊗X̃OW̃,−)

to the direct summands of εOX̃ ∗G
′⊗X̃OW̃. Artin-Verdier’s theorem 6.1 shows that OW̃ decomposes

as the direct sum of the F (E), E ∈ E . If E,E′ lie in the same G-orbit then

εOX̃ ∗G
′⊗X̃F (E) ' εOX̃ ∗G

′⊗X̃F (E′)

so the corollary follows.
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For the reader familiar with [CHI], recall that for a canonical order A, the number of permissible
A-modules was one more than the number of exceptional curves in the minimal resolution of A ([CHI,
theorem 8.6]). Usually, these permissible modules were just indecomposable reflexive A-modules, but
occasionally, they were direct sums of a pair of indecomposable reflexive A-modules. These two cases
correspond to whether or not εOX̃ ∗G

′⊗X̃F (E) is indecomposable or splits into two indecomposables.
The rest of this section is concerned with computing the number of non-isomorphic indecomposable
summands of εOX̃ ∗G

′⊗X̃F (E).
The following lemmas will be useful.

Lemma 6.3 Suppose that G stabilises the exceptional curve E ⊂ X̃ and the image of the induced map
G −→ AutE is cyclic. Then there exists a natural G-action on F (E) which makes F (E) an OX̃ ∗G-
module.

Proof. Since the G-action on E factors through some cyclic quotient group, there are two fixed points
on E. Looking complete locally at such a fixed point p ∈ X̃, we can find a curve C which intersects E
at p with multiplicity one, such that C is G-stable. This follows from the argument in [A86, proof of
proposition 4.13] using the fact that G stabilises E. Note that O(C) is a G-stable subsheaf of k(X̃) so
is naturally a OX̃ ∗G-module.

Suppose first that E = E0 is an extremal curve in the tree of exceptional curves. Since only one
other exceptional curve intersects it, we can find a transverse curve C0 to E0 as above, which is G-stable
and disjoint from other exceptional curves. Also, F (E0) is the universal extension of O(C0) by direct
sums of OX̃ so F (E0) is also an OX̃ ∗G-module in a natural way. Suppose now that E is not extremal.
There are two cases. The first possibility is that G actually stabilises all the curves in a chain going
from E to some extremal exceptional E0 curve in the tree. In this case, we let C0 denote that transverse
curve to E0 above and C be a transverse curve to E which intersects no other exceptional curve. Now
C is linearly equivalent to a sum of the exceptional curves E0, . . . , E and C0. These curves are all
G-stable so we can conclude as before. Finally, the only other possibility is that the exceptional fibre
is a string of rational curves and E is the middle one. The action of any g ∈ G either stabilises all the
exceptional curves in the string or reverses the order of the exceptionals. We may assume that some
g ∈ G swaps the ends of the string. The fixed points of G on E above therefore cannot be the points
of intersection with the neighbouring exceptional curves. Hence, the transverse curve C found in the
previous paragraph is disjoint from all the other exceptional curves. The lemma now follows.

Lemma 6.4 Let F be an OX̃ ∗G-module. Then OX̃ ∗G
′⊗X̃F is an OX̃ ∗G

′
-bimodule if one defines the

left action to be left multiplication in OX̃ ∗G
′
and the right action to be given by

(r ⊗X̃ f)g := rg ⊗ g−1(f)

where g ∈ G
′
, r is a section of OX̃ ∗G

′
, f is a section of F and the action of g−1 on f is given

by the OX̃ ∗G-module structure on F . Furthermore, εOX̃ ∗G
′⊗X̃F is an εOX̃ ∗G

′
-sub-bimodule of

OX̃ ∗G
′⊗X̃F .

Proof. To check the above right action makes OX̃ ∗G
′⊗X̃F into a bimodule involves checking the

relations in the skew group ring. We omit this. Since F is an OX̃ ∗G-module, kµe acts centrally on the
bimodule. This gives the last statement of the lemma.

Lemma 6.5 Let Add denote the full subcategory of εOX̃ ∗G
′−mod, consisting of modules M whose

underlying sheaf structure MOX̃
is isomorphic to a finite direct sum of F (E) for various E ∈ E. Then

M ∈ Add is indecomposable if and only if its endomorphism ring is a complete local ring with residue
field k. In particular, Add is a Krull-Schmidt category, that is, decomposition into indecomposables is
unique.
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Proof. Given M ∈ Add, the derived McKay correspondence for the Kleinian singularity X shows that
EndM is a finitely generated module over the commutative complete local noetherian ring OG

W . The
lemma now folows from standard Krull-Schmidt theory over complete local rings (see for example [CR,
section 6B]).

We seek a numerical form of the McKay correspondence for canonical orders. Since the ramification
data of the minimal resolution is the what we know most about the resolution, it will be most useful
to find the number of non-isomorphic indecomposable summands of εOX̃ ∗G

′⊗X̃F (E) in terms of the
ramification data of εOX̃ ∗G

′
. Recall that when the skew group ring is chosen as in proposition 4.4,

the ramification data can also be interpreted as follows. The centre of εOX̃ ∗G
′
is Z̃ := X̃ / G. Also, if

eC denotes the ramification index of X̃ / Z̃ of at C, then eC is also the ramification index of εOX̃ ∗G
′

at C. We assume henceforth that Z̃ is smooth, as happens whenever εOX̃ ∗G
′
is a terminal order.

Theorem 6.6 Let E ⊆ X̃ be an exceptional curve whose image EZ ⊂ Z̃ is of type In,e. Then there are
n non-isomorphic indecomposable summands of εOX̃ ∗G

′⊗X̃F (E).

Proof. Let λ, ν ∈ G
′

be elements which map to generators of G of order ne, e respectively. As in
example 3.2, we may assume that λ, ν have orders ne, e too. Hence k 〈λ 〉 has ne primitive idempotents
εj and we label them so that (λ − ζj)εj = 0 where ζ is a primitive ne-th root of unity. Now the
ramification of X̃ / Z̃ shows that E ⊂ X̃ is the only exceptional curve lying above EZ ⊂ Z̃. So by
lemma 6.4, εOX̃ ∗G

′⊗X̃F (E) is an εOX̃ ∗G
′
-bimodule. We thus have a decomposition of left modules

εOX̃ ∗G
′⊗X̃F (E) '

ne−1⊕

j=0

Mj where Mj := εOX̃ ∗G
′⊗X̃F (E)εj .

Now ν, λ skew commute in εk G
′
by some primitive e-th root of unity, so right multiplication by powers

of ν yield isomorphisms
Mj ' Mj+n ' Mj+2n ' . . . ' Mj+(e−1)n.

We wish to show that the Mj are indecomposable, so that the non-isomorphic indecomposable
summands of εOX̃ ∗G

′⊗X̃F (E) are M0, . . . , Mn−1. To this end, note that OX̃ ∗ 〈λ 〉 is a subalgebra of
εOX̃ ∗G

′
so the Mj are OX̃ ∗ 〈λ 〉-modules too. We need the following lemma which gives the e = 1

case of the theorem.

Lemma 6.7 Let F be an indecomposable OX̃ ∗ 〈λ 〉-module whose underlying OX̃-module structure is a
direct sum of copies of F (E). Then

F ' OX̃ ∗ 〈λ 〉⊗X̃F (E)εj

for some j. Furthermore, the OX̃ ∗ 〈λ 〉⊗X̃F (E)εj are non-isomorphic OX̃ ∗ 〈λ 〉-modules for j =
0, 1, . . . , ne− 1.

Proof. Note that theOX̃ ∗ 〈λ 〉-bimodule structure onOX̃ ∗ 〈λ 〉⊗X̃F (E) comes from applying lemma 6.4
in the special case G = 〈λ 〉. Now the OX̃ ∗ 〈λ 〉⊗X̃F (E)εj are indecomposable, because, as sheaves on
X̃, they are isomorphic to F (E). Viewing them as 〈λ 〉-equivariant sheaves on X̃, we see they differ only
in that the action of λ differs by an ne-th root of unity. Suppose two such modules are isomorphic. Let
us fix an OX̃ ∗ 〈λ 〉-module structure on F (E). Then there is some automorphism φ of the OX̃-module
F (E) which skew commutes with the action of λ by some non-trivial root of unity, that is φλ = ξλφ for
some ne-th root of unity ξ 6= 1. But by lemma 6.5, φ is a scalar modulo the radical J of EndX̃ F (E). Now
viewing λ as an element of EndX̃ / 〈λ 〉 F (E) ⊃ EndX̃ F (E), we see that λ−1 EndX̃ F (E)λ = EndX̃ F (E)
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and hence λ−1Jλ = J . The equation φλ = ξλφ cannot hold in F (E)/F (E)J so the OX̃ ∗ 〈λ 〉⊗X̃F (E)εj

must all be non-isomorphic.
Consider now an indecomposable F as in the lemma. We have a surjective map of OX̃ ∗ 〈λ 〉-modules

OX̃ ∗ 〈λ 〉⊗X̃F −→ F

which splits as a map of OX̃-modules. By Maschke’s theorem, it splits as OX̃ ∗ 〈λ 〉-modules. We
see that F must be an indecomposable summand of OX̃ ∗ 〈λ 〉⊗X̃F (E) so the lemma follows from the
decomposition

OX̃ ∗ 〈λ 〉⊗X̃F (E) '
ne−1⊕

j=0

OX̃ ∗ 〈λ 〉⊗X̃F (E)εj

and the Krull-Schmidt property of lemma 6.5.

We return to the proof of the theorem. We consider the decomposition of each Mj into indecom-
posable OX̃ ∗ 〈λ 〉-modules. Note that

Mj =
e−1∑

i=0

νiεOX̃ ∗ 〈λ 〉⊗X̃F (E)εj (4)

and in fact, the sum is direct by rank considerations. Now

νiεOX̃ ∗ 〈λ 〉⊗X̃F (E)εj = εOX̃ ∗ 〈λ 〉⊗X̃F (E)νiεj

so skew commuting the νi past the εj we see (4) yields the following decomposition of OX̃ ∗ 〈λ 〉-modules

Mj '
e−1⊕

i=0

εOX̃ ∗ 〈λ 〉⊗X̃F (E)εj+in.

This shows that the Mj for j = 0, 1, . . . , n−1 are already non-isomorphic as εOX̃ ∗ 〈λ 〉-modules. It also
shows that they are indecomposable as εOX̃ ∗G

′
-modules. This completes the proof of the theorem.

Proposition 6.8 Let E ⊆ X̃ be an exceptional curve whose image EZ ⊂ Z̃ is either i) of type 0 or ii)
of type C2 where n = 2, e = 1. Then εOX̃ ∗G

′⊗X̃F (E) is indecomposable.

Proof. In both cases, the G-orbit of E consists of |G | different exceptional curves. Hence as a sheaf
on X̃ we have the decomposition

εOX̃ ∗G
′⊗X̃F (E) '

⊕

j

F (Ej)

where the sum runs over the G-orbit of E. Suppose now that F ′ is a non-zero summand of εOX̃ ∗G
′⊗X̃F (E).

The Krull-Schmidt property shows that F ′ must contain some F (Ej) and hence all F (Ej). It follows
that εOX̃ ∗G

′⊗X̃F (E) is indeed indecomposable.

Proposition 6.9 Let E1 ⊆ X̃ be an exceptional curve whose image EZ ⊂ Z̃ is of type Ie,1 where n = 1.
Then εOX̃ ∗G

′⊗X̃F (E1) is the direct sum of e non-isomorphic indecomposable summands.

Proof. We note that in this case, G = Z /eZ×Z /eZ. The ramification data shows that locally at EZ ,
the cover X̃ |EZ

of EZ has e connected components, say E1, E2, . . . , Ee, and each component is a cyclic
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cover of EZ of degree e. Let λ ∈ G
′
be such that its image λ̄ in G generates the decomposition group

of E1. Note that G is abelian so λ stabilises all the Ei and that 〈 λ̄ 〉 ' Z /eZ. We may pick ν ∈ G
′
so

that λ, ν generate G
′
. As in example 3.2, we may adjust λ, ν by scalars so that λe = 1 = νe. Note also

that λ, ν skew commute by some primitive e-th root of unity ζ and ν permutes the exceptional curves
E1, E2, . . . , Ee cyclically.

Since λ stabilises E1, εOX̃ ∗G
′⊗X̃F (E1) is an εOX̃ ∗G

′−OX̃ ∗ 〈λ 〉-bimodule by lemma 6.4. Hence
if ε1, . . . , εe denote the primitive idempotents of k 〈λ 〉, we have the following decomposition

εOX̃ ∗G
′⊗X̃F (E1) '

e⊕

j=1

Mj where Mj := εOX̃ ∗G
′⊗X̃F (E1)εj .

Arguing as in the previous proposition, we see that as a sheaf on X̃ we have

Mj ' F (E1)⊕ F (E2)⊕ . . .⊕ F (Ee)

so must be indecomposable. Now lemma 6.7 shows there are e distinct OX̃ ∗ 〈λ 〉-module structures one
can impose on the sheaf F (E1). They all must occur in εOX̃ ∗G

′⊗X̃F (E1) so the Mj ’s must already
be distinct as OX̃ ∗ 〈λ 〉-modules. This finishes the proof of the proposition.

The last result we need to determine the indecomposable projectives of OW ∗G′ is the following
well-known fact.

Proposition 6.10 εOX̃ ∗G
′
has n non-isomorphic indecomposable summands.

Proof. The proof of theorem 6.6 can be repeated, essentially verbatim to give the result in this case.

7 Cyclic covers and minimal resolutions

In this section, we review the construction of orders via non-commutative cyclic covers introduced in
[C]. We will construct terminal orders in the complete local case, from this point of view. This will
be useful when we construct minimal resolutions of canonical orders. We will also prove that minimal
resolutions of canonical orders can always be constructed via non-commutative cyclic covers. A nice
feature of the proof is that it is uniform unlike the case-by-case analysis required for the skew group
ring construction.

Below, we will use Artin-Van den Bergh’s notion of bimodules (over a scheme), details of which may
be found in [AV].

We recall first the definition of non-commutative cyclic covers. Let Y be a normal surface and σ be
an automorphism of Y of finite order e. Let G = 〈σ 〉 and Z := Y/G which we will assume is a scheme.
Consider a rank one reflexive sheaf L on Y which corresponds to some Weil divisor D via L = OY(D).
We consider the OY-bimodule Lσ whose left module structure is L, but the right action is twisted
through by σ so that xr = σ(r)x for x ∈ L, r ∈ OY. One can take tensor products of OY-bimodules
and indeed, they form a monoidal category. The only formula we really need involving tensor products
will be

L⊗i
σ = (L⊗Y σ∗ L⊗Y . . .⊗Y L⊗(i−1))σi .

In general, this will not be reflexive as a left (or right) module so we will consider its reflexive hull

L[i]
σ := (L⊗Y σ∗ L⊗Y . . .⊗Y L⊗(i−1))∗∗σi

which is also the OY-bimodule OY(D+σ−1 D+ . . .+σ−i+1 D)σi . We call this a reflexive tensor product.
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Suppose we are given an isomorphism of bimodules φ : L[e] ∼−→ OY such that the diagram below
commutes.

Lσ ⊗Y L
[e−1]
σ ⊗Y Lσ

1⊗φ−−−−→ Lσ ⊗Y OYyφ⊗1

yφ

OY ⊗Y Lσ
φ−−−−→ Lσ

(5)

In this case, we call φ a relation satisfying the overlap condition and we have

Proposition 7.1 Suppose we have a relation φ : L[e] ∼−→ OY satisfying the overlap condition as above,
then there is an algebra structure on

A(Y ; Lσ, φ) := OY ⊕Lσ ⊕ L[2]
σ ⊕ . . .⊕ L[e−1]

σ

We call this algebra a non-commutative cyclic cover of Y . It is an order on Y/G.

Proof. This is proposition 3.2 of [C].

We shall now construct terminal orders in the complete local case, using non-commutative cyclic
covers. Let σ, τ act linearly on k[[s, t]] via the matrices

σ =
(

ζ 0
0 1

)
, τ =

(
ζn 0
0 ζ−n

)

where ζ is a primitive ne-th root of unity. Let S = k[[s, t]]〈τ〉 = k[[se, st, te]] and note that σ descends
to an action on S. Let L be the ζ-eigenspace of τ acting on k[[s, t]] so that L = Ss + Ste−1. Note that
the indecomposable reflexive S-modules are the τ -eigenspaces of k[[s, t]] and that in fact, L[i] is the ζi-
eigenspace. The S-bimodule Lσ can be conveniently interpreted as the submodule Lσ ⊆ k[[s, t]]∗Z /ne
where the cyclic group Z /ne is generated by σ.

Proposition 7.2 The natural isomorphism φ : L
[e]
σ

∼−→ S is a relation satisyfing the overlap condition.
The coresponding non-commutative cyclic cover

A := A(Spec S;Lσ) = S ⊕ L σ⊕ . . .⊕ L[e−1] σe−1

is a terminal order with centre k[[u, v]] where u = sne, v = te. The ramification curves are u = 0, v = 0
with corresponding ramification indices ne, e.

Proof. The relation φ is induced by multiplication in k[[s, t]]∗Z /ne. Associativity of this mutliplication
gives the overlap condition so the cyclic cover is well-defined. Now, we know from [C, corollary 3.4] that
A is an order with centre S〈σ 〉 = k[[sne, te]]. We know from [C, theorem 3.6] that A is a normal order
with primary ramification indices equal to the ramification indices of S/S〈σ 〉, that is ne at u = 0, e at
v = 0 and unramified elsewhere.

To verify the secondary ramification data, we compute at the ramification curves explicitly. Let C
denote the curve te = 0 and I be the ideal (st, te) / S. Note that I ⊂ radAC . Now

AC/IAC ' k(se)⊕ k(se)s σ⊕ . . .⊕ k(se)se−1 σe−1⊕k(se)σe⊕k(se)s σe+1⊕ . . .⊕ k(se)se−1 σne−1 .

We see that AC/IAC is generated over k(se) by s σ. One readily computes from this fact that
Z(AC/IAC) = k(sne)[(s σ)n]. This is a totally ramified field extension of degree e over the residue
field k(C) = k(sne). Now the ramification index of A at C is e so k(sne)[(s σ)n] is also the ramification
of A at C. Similarly, if C is the ramification curve sne = 0 and I = (se, st) / S we see that

AC/IAC ' k(te)⊕ k(te)t σ−1⊕ . . .⊕ k(te)σ−e⊕ . . .⊕ k(te)te−1 σ1−ne
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which is already commutative so is the ramification of A at C. This is a degree ne extension of
the residue field k(C) ' k(te) which decomposes as a direct product of n rings corresponding to
the n primitive idempotents of k 〈σe 〉 ⊂ AC/IAC . Let ε be one of these primitive idempotents.
Then εAC/IAC = εk(te)[εt σ] which is a totally ramified field extension of k(C). The preceding two
computations show that A is a terminal order with the ramification stated in the proposition.

Once we move away from the complete local case, we find that terminal orders cannot always
be constructed via non-commutative cyclic covers. It is quite a surprise that minimal resolutions of
canonical orders can always be constructed this way.

Theorem 7.3 Let A be a canonical order on Z = Spec R where R is a complete local ring. Let Ã be a
minimal resolution of A and Z̃ its centre. There is a normal surface Ỹ and a non-commutative cyclic
cover B̃ of Ỹ such that B̃ is Morita equivalent to Ã.

Proof. We will need to use the canonical bimodule ωÃ := Hom Z̃(Ã, ωZ̃) and the canonical divisor

KÃ := KZ̃ +
∑

C

(1− 1
eC

)C

where the sum ranges over all ramification curves and eC denotes the ramification index of Ã at C as
usual. We define ωA,KA similarly. More information about KA can be found in [CI05, §3.3,3.4] where
it plays a central role in the minimal model program for orders. We recall from [CK, proposition 5]
that if Ã is rank n2 as a sheaf on Z̃, then

ω
[n]

Ã
' Ã⊗Z̃OZ̃(nKA).

We will also use the theory of Artin covers developed in [A86, section 2] and further explained in [CHI,
section 3].

Let f : Z̃ −→ Z be the natural contraction which we note is a rational resolution by [CI05, propo-
sition 3.15]. From the original definition of canonical orders [CI05, page 444] we know KÃ ≡ f∗KA so
since KA is Q-Cartier, KÃ is numerically trivial. In particular, some multiple of KÃ is trivial which
in turn implies that some reflexive tensor power of ωÃ is also trivial. (In fact, if e is the index of the
central simple algebra A ⊗Z k(Z) then ω

[e]

Ã
' Ã.) Similarly, this same reflexive tensor power of ωA is

also trivial. We may thus form the index one covers B̃ of Ã and B of A as defined by Le Bruyn, van
Oystaeyen, Van den Bergh (see [CHI, section 4]). In short, they are

B̃ = Ã⊕ωÃ⊕ω
[2]

Ã
⊕ . . .⊕, ω

[e−1]

Ã
, B = A⊕ ωA⊕ω

[2]
A ⊕ . . .⊕, ω

[e−1]
A .

By [CHI, proposition 5.1], B̃ is an Artin cover of Ã with the property that its centre Ỹ has the same
ramification on Z̃ as does Ã. A similar statement can be made for the centre Y of B. We also observe
from the proof of [CHI, proposition 5.1] that Ỹ, Y are regular in codimension one. Furthermore, OỸ,OY

are reflexive as sheaves on Z̃, Z respectively. It follows that Ỹ, Y are normal by Serre’s criterion.
The adjunction formula induces a non-commutative relative trace map f∗ωÃ −→ ωA which in turn

induces a map Ỹ −→ Y . We thus obtain the following diagram of surfaces

Ỹ
res

f

²²

// Ỹ

f

²²

// Z̃

f

²²
Y res // Y // Z

where the superscript “res” denotes the minimal desingularisation which is possible as the surfaces
involved are all normal. Now away from the exceptional locus, Ỹ and Y are isomorphic so the maps f
are all birational.
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Now Y is a quotient singularity by [A86, proposition 2.12] and so in particular, is rational. This
shows that the closed fibre of Y res and hence Ỹ

res
is a tree of rational curves. By [A87, lemma 1.4], Ỹ

res

has trivial Brauer group. Hence, away from ramification, Ã is in the relative Brauer group Br Ỹ / Z̃ so by
[C, theorem 3.9], its Brauer class is represented by a non-commutative cyclic cover on Y . In particular,
this cyclic cover has the same ramification data as Ã so the result follows from proposition 4.1.

Remark: As for the construction of a resolution Ã via skew group rings, the key is to find a Galois
cover Ỹ of Z̃ with the same ramification data as Ã. However, here the cover needs to be cyclic but it
need not be smooth.

8 Case by case analysis of minimal resolutions

In this section, we construct explicitly, the minimal resolutions of canonical orders via non-commutative
cyclic covers and, where possible, via skew group rings. This will be carried out case-by-case, according
to ramification data. We then describe the McKay corresondences. In particular, this will prove
theorems 1.1 and 1.2.

To keep notation straight, we will use the following notation throughout the section. We let A denote
a canonical order and Ã a minimal resolution. We will have some subset of the following commutative
diagram of surfaces, to be described below.

W̃

f

²²

// X̃

f

²²

// Ỹ

f

²²

// Z̃

f

²²
W // X // Y // Z

(6)

We let Z̃, Z be the centres of Ã, A respectively. We let Ỹ denote a cyclic cover of Z̃ which has the
same ramification data as Ã. In the examples below, there will be a corresponding cyclic cover Y of Z.
Examples of such surfaces include the surfaces Ỹ, Y in the proof of theorem 7.3. If A is non-trivial in
the Brauer group, then Ỹ will not be smooth. Below X̃ will denote (when it exists), a smooth cover of Z̃
with the same ramification as Ã. We let X be the corresponding cover of Z. In several examples, X̃ will
be constructed from Ỹ by taking a Galois cover which is unramified over the smooth locus of Ỹ. These
X̃, X will coincide with the X̃, X in sections 5 and 6. In particular, when the smooth cover X̃ exists,
we will be able to obtain the derived and numerical McKay correspondences. As in sections 5 and 6,
W = Spec k[[s, t]] and W̃ will be the universal H-cluster where H is the Galois group of W/X. If G
denotes the Galois group of W/Z, then in all cases we will find that H /G and G := G/H ' Z /ne×Z /e
for some integers n, e. Also, the hypotheses of proposition 4.4 on exceptional curves will hold, so we
may consider the central extensions G

′
, G′ of G, G by µe as in that proposition. Finally, ε will denote,

as usual, a primitive idempotent of kµe such that a generator ρ of µe acts as a primitive root of unity
in εkµe (see section 3 equation (1)).

8.1 Type A1,2,ζ

Ramification data of minimal resolution: Let Z = Spec k[[u, v]]. A type A1,2,ζ canonical order
has ramification curve the node uv = 0 with ramification indices 2e on the branches and secondary
ramification e at the node (see definition 2.3). Its minimal resolution Ã has centre Z̃ the blowup of
Z at the closed point. The ramification indices are of course 2e at the strict transforms of the curves
u = 0, v = 0 and is e at the exceptional curve EZ ⊂ Z̃. This exceptional curve is of type I2,e.

Construction of minimal resolution: We construct some auxiliary surfaces as in the diagram (6)
at the beginning of the section. Let W = Spec k[[s, t]] and G = Z /2e × Z /2e = 〈σ, τ 〉 act on W by
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σ : s 7→ ζ s, t 7→ t, τ : s 7→ s, t 7→ ζ t where ζ is a primitive 2e-th root of unity. This coincides with the
action in the table following theorem 3.5. Note that Z ' W/G and (σ τ−1)e = σe τe. We define

X := W/ 〈σe τe 〉 , Y = W/ 〈σ τ−1 〉 .
Let W̃ be the blowup of W at its closed point and E be its exceptional curve. Note that G also acts on
W̃. Hence we obtain a diagram as in (6) above on setting

X̃ := W̃ / 〈σe τe 〉 , Ỹ = W̃ / 〈σ τ−1 〉 .
Note that σe τe acts as the antipodal map on W so X is the ordinary double point. Computing on an
affine patch shows that σe τ e acts on W̃ freely away from E and that E consists of fixed points. The
quotient W̃ / 〈σe τ e 〉 is thus smooth with a (−2)-curve for an exceptional curve. Hence X̃ is just the
minimal resolution of X and W̃ is just the universal H-cluster on W where H = 〈σe τe 〉. Similarly, an
affine computation shows Z̃ = W̃ /G and W̃ −→ Z̃ is ramified precisely along E and the strict transforms
of u = 0 and v = 0. Moreover, the ramification indices are all 2e.

By Galois theory, the quotient G := G/ 〈σe τ e 〉 ' Z /2e × Z /e acts on X̃ with quotient Z̃. The
ramification indices are 2e along the strict transforms of u = 0 and v = 0 and e along E. This is the
same as the ramification of a minimal resolution of a canonical order of type A1,2,ζ . We are thus in the
situation of proposition 4.4 and can form a skew group ring εOX̃ ∗G

′
which is the minimal resolution

of a type A1,2,ζ canonical order. Here G
′
is the central extension G by µe found in proposition 4.4 and

ε is the idempotent in that proposition.
We can also construct explicitly the minimal resolution as a non-commutative cyclic cover using

Ỹ. Note that Ỹ / Z̃ is a cyclic cover with Galois group G/ 〈σ τ−1 〉. Note that we may identify this
Galois group with 〈σ 〉 since the composite 〈σ 〉 ↪→ G −→ G/ 〈σ τ−1 〉 is an isomorphism. Also, Y is
the rational double point of type A2e−1. To compute Ỹ we consider it as the quotient of X̃ by the
cyclic group 〈σ τ−1 〉 / 〈σe τe 〉 ' Z /e. Working on affine patches we see that Ỹ has one exceptional
curve and two singularities, each of type Ae−1. It follows that the minimal desingularisation Ỹ

res
of

Ỹ is the minimal desingularisation of Y . Let E1, . . . , E2e−1 ⊂ Ỹ
res

be the exceptional curves listed in
order. Then π : Ỹ

res −→ Ỹ is just the contraction of all the exceptional curves bar the middle one
Ee. Now local computations show X̃ / Ỹ is unramified in codimension one, so the ramification indices
of Ỹ −→ Z̃ also coincide with that of the minimal resolution of a canonical order of type A1,2,ζ . Hence,
as in theorem 7.3, we can construct the minimal resolution via a non-commutative cyclic cover of Ỹ.

To make this explicit, we need only describe the OY-bimodule Lσ used to construct the non-
commutative cyclic cover A(Ỹ; Lσ). Let C1, . . . , C2e−1 be curves transverse to Ei and disjoint from
Ej whenever j 6= i. We define L := OỸ(π∗C1 − π∗C2e−1). Now, σ stabilises each of the exceptional
curves Ei so σ∗ L ' L and L

[2e]
σ ' L[2e]. We need to show that L[2e] ' OỸ so that we can form the

non-commutative cyclic cover A(Ỹ; Lσ). Calculating on Ỹ
res

we find

2e(C1 − C2e−1) ∼ (E1 + 2E2 + . . . + (2e− 1)E2e−1)− ((2e− 1)E1 + (2e− 2)E2 + . . . + E2e−1).

But h contracts all exceptionals bar Ee so π∗2e(C1−C2e−1) ∼ 0. It follows that L
[2e]
σ ' OỸ as desired.

McKay correspondences: Proposition 5.1 shows that there is a derived equivalence between the
minimal resolution Ã := εOX̃ ∗G

′
and the skew group ring A := εOW ∗G′. Now theorem 3.5 shows

that A is a canonical order of type A1,2,ζ so we have verified theorem 1.1 in the case of type A1,2,ζ .
We may also use the results of section 6 to deduce the numerical form of the McKay correspondence.
The unique exceptional curve EZ in the minimal resolution of A is of type I2,e so, by theorem 6.6,
corresponds to precisely two indecomposable reflexive A-modules. The regular representation of Ã
splits in two by proposition 6.10, so also corresponds to two indecomposable reflexive A-modules. This
explains the observation in [CHI, section 8.1] that there are two permissible modules in this case, each
of which splits in two.
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8.2 Type BLn

Ramification data of minimal resolution: From definition 2.3, a canonical order A of type BLn

has centre Z = Spec k[[u, v]] and a single ramification curve C : v2 = u2n+1 with ramification index 2.
Its minimal resolution Ã has centre Z̃ which minimally resolves the log pair (Z, C). That is, Z̃ is the
iterated blowup of Z with exceptional fibre, a string of rational curves E1, . . . , En with En a (-1)-curve
and all other curves (-2)-curves. Also, Ã has a unique ramification curve D of ramification index 2,
which is the strict transform of C. The iterated blowup Z̃ is such that D is smooth and intersects En

at one point with multiplicity two.

Construction of minimal resolution: Let Y be the double cover of Z ramified on C which we note
is a Kleinian singularity of type A2n. Also, let Ỹ be the double cover of Z̃ ramified on D which is smooth
(and hence we may take X̃ = Ỹ). Moreover, the inverse image of Ei in Ỹ is the union of two smooth
rational curves, say Fi, F2n+1−i and we see that F1, . . . F2n is a string of (-2)-curves. Note that Y res

has 2n exceptional curves too so being minimal we must have Ỹ = Y res. Since the canonical order A of
type BLn is trivial in the Brauer group, the minimal resolution can be taken to be Ã = OỸ ∗Z /2 where
Z /2 acts via the covering involution τ of Ỹ / Z̃. The cyclic cover and skew group ring constructions
coincide in this case for we also have Ã = A(Ỹ; (OỸ)τ ).

McKay correspondences: To invoke proposition 5.1, we consider the subgroup G = G′ ⊂ GL2

generated by

σ =
(

ζ 0
0 ζ−1

)
, τ =

(
0 1
1 0

)
(7)

where ζ is a primitive (2n + 1)-th root of unity. Then A = OW ∗G is a canonical order of type BLn

by theorem 3.5. If in proposition 5.1 we let H = 〈σ〉 then we obtain a derived equivalence between A
and OY ∗G/H. Now G/H ' Z /2 so to prove theorem 1.1 for type BLn, it suffices to identify the two
actions of Z /2 on Ỹ, one due to the construction of the double cover of Z̃ above, the other induced by
the action of Z /2 on Y . This is clear since both actions are totally ramified on the same curve on Y so
coincide on Y and hence on Ỹ.

For the numerical McKay correspondence, note that the exceptional curves E1, . . . , En−1 are type 0
whilst En is type C2. Proposition 6.8 shows that they each correspond to an indecomposable reflexive
A-module. Also, proposition 6.10, shows that the regular representation Ã splits in two, so there are
two other indecomposable reflexive A-modules. This agrees with the observation in [CHI, section 8.2]
that there are n indecomposable permissible modules and another permissible module which splits in
two.

8.3 Type Bn

Ramification data of minimal resolution: This is very similar to the previous case. Again the
centre Z̃ of the minimal resolution is an iterated blowup of Z = Spec k[[u, v]] so that the exceptional
fibre of f : Z̃ −→ Z is a string of (-2)-curves E1, . . . , En−1 followed by a (-1)-curve En as before. The
ramification of the minimal resolution however, consists now of two disjoint smooth curves intersecting
En transversally. The ramification index of both curves is 2.

Construction of minimal resolution: Let D denote the union of the two ramification curves on Z̃.
We may form the double cover Ỹ of Z̃ ramified on D and the double cover Y of Z ramifed on f(D).
Note that Y is a Kleinian singularity of type A2n−1. Also, Ỹ is smooth and the inverse image of Ei in Ỹ
is the union of smooth rational curves Fi, F2n−i (note that all but En split into two rational curves). As
for type BLn, F1, . . . F2n−1 is a string of (-2)-curves and Ỹ = Y res. Hence the minimal resolution of A
can be taken to be Ã = OỸ ∗Z /2. This coincides with the non-commutative cyclic cover construction.

McKay correspondences: If we let G be as in the BLn case (see (7)) except that now ζ is a primitive
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2n-th root of unity, then A = OW ∗G is a canonical order of type Bn by theorem 3.5. Also, setting
H = 〈σ 〉, we see that Y = W/H and Ã = OỸ ∗G/H. Hence, proposition 5.1 gives a derived equivalence
between A and Ã, thus proving theorem 1.1 for type Bn.

As for the numerical McKay correspondence, each of the exceptional curves E1, . . . , En−1 is of type
0 so correspond to an indecomposable reflexive A-module. The exceptional curve En is of type I2,1

so corresponds to two indecomposable reflexives by theorem 6.6. Finally, the module Ã splits in two
by proposition 6.10 so there are only two other indecomposable reflexives. This agrees with [CHI,
section 8.3] where we observed n− 1 indecomposable permissible A-modules and two more permissible
A-modules, each of which split into two.

8.4 Vanishing lemmas

In the next subsection, we consider canonical orders of type Ln. Their minimal resolutions cannot be
constructed via skew group rings so the results of section 5 do not apply. Instead, we will need to
construct a tilting bundle directly, and this subsection contains some vanishing lemmas to facilitate
this. Below, Y denotes a Kleinian singularity and Y res its minimal resolution. We let F denote the
fundamental cycle.

Lemma 8.1 Let L ∈ Pic Y res. If H1(F, L|F ) = 0 then H1(Y res, L) = 0.

Proof. By Zariski’s main theorem and Serre duality, it suffices to show

H0(mF, L∗(mF )|mF )∗ = H1(mF, L|mF ) = 0.

We do so by induction on m. The hypothesis of the lemma gives the m = 1 case. Consider the exact
sequence

0 −→ L∗F (F ) −→ L∗(m+1)F ((m + 1)F ) −→ L∗mF ((m + 1)F ) −→ 0

where the subscript denotes restriction. By definition of the fundamental cycle, there is an effective
divisor C, linearly equivalent to −F which is transverse to the exceptional curve. Hence L∗mF ((m+1)F )
embeds in L∗mF (mF ) so has trivial space of global sections. The long exact sequence in cohomology
now completes the induction.

We restrict now to the case where Y is a Kleinian singularity of type A2n+1 so its minimal resolution
is a string of (−2)-curves. We let Ci be an irreducible curve transverse to the i-th exceptional curve in
the string. The subscript i here will be considered modulo 2n + 2. We let C0 = 0 = C2n+2.

Lemma 8.2 Let i ∈ [0, n− 1], j ∈ [n + 1, 2n + 2] be integers. Then

H1(Y res,O(±(Ci + Cn+1 − Cn − Cj))) = 0.

Proof. We use lemma 8.1 and the fact that F ∼ −C1 − C2n+1. We only prove the + case, the − case
being similar. It suffices to show that

H0(F,OF (−C1 − C2n+1 − Ci − Cn+1 + Cn + Cj)) = 0.

Now the pole at Cn ∩ F is sandwiched in between the zeros at C1 ∩ F, Cn+1 ∩ F and similarly the pole
at Cj ∩F is sandwiched in between the zeros at Cn+1 ∩F, C2n+1 ∩F . This gives the desired vanishing.
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8.5 Type Ln

Ramification data of minimal resolution: The centre Z̃ of the minimal resolution is an iterated
blowup of Z = Spec k[[u, v]] so that the exceptional fibre of f : Z̃ −→ Z is a string of (-2)-curves
E1, . . . , En−1 followed by a (-1)-curve En. There are two ramification curves, which intersect each other
transversally and also intersect En transversally. The ramification indices are two.

Construction of minimal resolution: Let Ỹ be the double cover of Z̃ ramified on the union D of the
ramification curves. Let Y be the corresponding double cover of Z ramified on f(D). As for type Bn,
Y is an A2n+1-singularity. Also the exceptional fibre in Ỹ is a string of rational curves but now Ỹ has
an ordinary double point at the node in the middle of the string. Let F1, . . . , F2n+1 be the exceptional
curves in Y res listed in order. Counting exceptional curves and computing their intersection matrix
shows that Ỹ can be obtained from Y res by contracting the middle exceptional curve Fn+1. Let Ci be
a curve on Y res cutting Fi transversally. If π denotes the contraction Y res −→ Ỹ then we let L be
the reflexive sheaf π∗OY res(Cn+1 − Cn). Now the covering involution τ ∈ Gal Y/Z acts on Pic Y res

by swapping Ci, C2n+2−i. Furthermore, (1 + τ)(Cn+1 − Cn) = −Cn + 2Cn+1 − Cn+2 ∼ Fn+1 so Lτ is
2-torsion. Hence, we may form the non-commutative cyclic cover Ã = A(Ỹ; Lτ ) = OỸ ⊕Lτ . Locally at
the ordinary double point on Ỹ, this construction is the same as that in proposition 7.2, so Ã is indeed
the minimal resolution of a type Ln canonical order.

McKay correspondences: We cannot apply proposition 5.1 in this case. Let G′ = 〈σ, τ 〉 be the
group defined in theorem 3.5 for type Ln. Note that G′ acts on W = Spec k[[s, t]] via the matrices in
(7) where ζ is a primitive (2n + 2)-th root of unity. Also theorem 3.5 shows that A := εOW ∗G′ is a
canonical order of type Ln where ε = 1

2 (1+σ2n+2). The relationship with the minimal resolution stems
from the fact that Y ' W/ 〈σ 〉 and the action of G′/ 〈σ 〉 ' 〈 τ 〉 is the Galois action on Y/Z.

Theorem 8.3 There is a tilting bundle for Ã whose endomorphism algebra is the canonical order
εOW ∗G′.

Proof. For simplicity, we shall let Ci also denote the corresponding Weil divisor on Ỹ and the subscript
i is considered modulo 2n + 2. Similarly, we set C0 = 0(= C2n+2). Let W̃ be the universal 〈σ 〉-cluster
on W so that OW̃ is a tilting bundle for Y res.

For j ∈ [n+2, 2n+2] we let Mj := OỸ(Cj) and for i ∈ [1, n+1] we let Mi := OỸ(Ci−1+Cn+1−Cn).
The choice of notation is made so that the left module (Lτ ⊗Ỹ Mr)∗∗ ' M2n+3−r and

Mi ' OỸ(Ci + Ei + Ei+1 + . . . + En).

Finally we let M = ⊕2n+1
r=0 Mr and wish to show (Ã⊗ỸM)∗∗ is a tilting bundle for Ã.

We first show Exti
Ã
((Ã⊗ỸM)∗∗, (Ã⊗ỸM)∗∗) = 0 for i > 0. Now Ã is terminal and (Ã⊗ỸM)∗∗

is a reflexive sheaf, so it is also locally projective as an Ã-module. Hence, from the local-global Ext
spectral sequence we need to show that Hi(Ỹ,HomÃ((Ã⊗ỸM)∗∗, (Ã⊗ỸM)∗∗)) = 0 for i > 0. Now
Ã⊗ỸM −→ (Ã⊗ỸM)∗∗ has finite length cokernel so functoriality of the reflexive hull and adjoint
associativity show

HomÃ((Ã⊗ỸM)∗∗, (Ã⊗ỸM)∗∗) = HomỸ(M, (Ã⊗ỸM)∗∗) = HomỸ(M, M⊕2) (8)

Now the last term decomposes as a sum of terms of the form HomỸ(Mr,Ms) which is a reflexive rank
one sheaf which can be written as π∗Nrs for some line bundle Nrs on Y res with R1π∗Nrs = 0. By the
Leray spectral sequence, it remains to show that all the H1(Y res, Nrs) = 0 which follows from the fact
that OW̃ = ⊕OY res(Ci) is a tilting bundle and from lemma 8.2.

Our next goal is to compute End(Ã⊗ỸM)∗∗. From (8) we see End(Ã⊗ỸM)∗∗ = (EndỸ M)⊕2 so
it seems expedient to determine EndỸ M . Note π∗OW̃ ⊂ M and generically, they are isomorphic. In
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fact, the right π∗OW̃-module structure on π∗OW̃ extends to M as follows. For i, l ∈ [1, 2n + 1] such
that i + l < 2n + 2 we have the following linear equivalences on Y res.

Ci ∼ iC1 + (i− 1)E1 + (i− 2)E2 + . . . + Ei−1

Cl ∼ lC1 + (l − 1)E1 + (l − 2)E2 + . . . + El−1

Ci+l ∼ (i + l)C1 + (i + l − 1)E1 + (i + l − 2)E2 + . . . + Ei+l−1

Hence Ci+l − Ci − Cl ∼ a1E1 + . . . + ai+l−1Ei+l−1 for some positive integers a1, . . . , ai+l−1. This
linear equivalence induces the multiplication map O(Ci)⊗Ỹ O(Cl) −→ O(Ci+l) in OW̃. The fact that
al, . . . , ai+l−1 ≥ 1 imply that this multiplication extends to a map O(Ci)⊗Ỹ Ml −→ Mi+l. This gives
the π∗OW̃-module structure on M . We seek to show that End M = EndOW̃. To this end, note

HomỸ(Mr,Ms) = H0(Y res,O(Cs − Cr + Ers))

where Ers is some exceptional divisor. Now the classical McKay correspondence on Y shows EndOW̃ =
OW ∗ 〈σ 〉 so H0(Y res,O(Cs − Cr)) = H0(Y res,O(Cs−r)). We claim

H0(Y res,O(Cs − Cr + Ers)) = H0(Y res,O(Cs − Cr))

so that HomỸ(Mr,Ms) is just given by right multiplication by H0(Y res,O(Cs−r)) ⊂ OW. Note that Ers

is either an effective divisor or negative effective. In the first case, we have equality because the right
hand side is a reflexive OY-module and so determined on the punctured spectrum which is isomorphic to
Y res−F . In the second case, it follows since we have checked that M is stable under right multiplication
by π∗OW̃. It is clear now that End M = OW ∗ 〈σ 〉.

Now End(Ã⊗ỸM)∗∗ is generated by End M and the involution τ induced by the natural isomorphism
M ' (Lτ ⊗Ỹ M)∗∗. To identify this with the canonical order εOW ∗G′, it is convenient to rescale the
natural action of σ so that it acts by ξ2i−1 on Mi where ξ is a square root of ζ. Note that now
σ2n+2 = −1 which is compatible with the algebra structure in εOW ∗G′ since ε = 1

2 (1 + σ2n+2). Also
(Lτ ⊗Ỹ Mr)∗∗ ' M2n+3−r so τ swaps Mr and M2n+3−r. This shows σ τ = τ σ−1. Finally, τ commutes
with OW in the same fashion as in εOW ∗G′ so we are done.

We show now that (Ã⊗ỸM)∗∗ does indeed generate the derived category. For convenience write
Ã(C) for (Ã⊗ỸO(C))∗∗. We construct some Ã-modules in the triangulated subcategory T generated
by the Ã(Cj) for j ∈ [n + 2, 2n + 2]. Let N be an invertible sheaf on Ỹ and r 6= n + 1. Note that the
exact sequences of sheaves on Ỹ

0 −→ N(−Cr) −→ N −→ OCr −→ 0,

remain exact when tensored with Ã. Hence if C is any linear combination of Cj ’s then Ã(−C) ∈ T .
Consider also the exact sequence of Ã-modules

0 −→ Ã −→ Ã(Cn+1) −→ Q −→ 0,

with Q chosen appropriately. It remains exact on tensoring on the right by an invertible OỸ-module
N . Also, Q is supported on the affine subscheme Cn+1 so we get an exact sequenece

0 −→ Ã⊗ỸN −→ Ã(Cn+1)⊗Ỹ N −→ Q −→ 0.

Now T contains Ã(Ci + Cn+1 − Cn) and Ã(Cn+1 − Cn) so it must contain Ã(−C) for C any linear
combination of C1, . . . Cn, Cn+2, . . . C2n+1. Hence, it suffices to show that for any non-zero Ã-module
F , there is a non-zero homomorphism from such a Ã(−C) to F . This holds by ampleness of C1 + . . . +
Cn + Cn+2 + . . . + C2n+1 in Ỹ. This completes the proof of the theorem.
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Corollary 8.4 There are n + 1 indecomposable reflexive A-modules.

Proof. This is also contained in [CHI, section 8.4], and we wish to give a proof here via the de-
rived McKay correspondence above. As usual, the indecomposable reflexives correspond to the non-
isomorphic indecomposable summands of the tilting bundle (Ã⊗ỸM)∗∗. But these are precisely the
Ã⊗ỸOỸ(Cj) for j ∈ [n + 2, 2n + 2]. There are n + 1 of these.

Note that all exceptional curves are of type 0 or X2 so one easily verifies theorem 1.2 in this case.

8.6 Type BDn

Ramification data of minimal resolution: As usual, the centre Z̃ of the minimal resolution is an
iterated blowup of Z = Spec k[[u, v]] so that the exceptional fibre of f : Z̃ −→ Z is a string of (-2)-
curves E1, . . . , En−1 followed by a (-1)-curve En. The ramification curves of the minimal resolution this
time, are E1, . . . , En−1 together with three smooth curves intersecting E1, En−1, En transversally. The
ramification index of all curves is 2.

Construction of minimal resolution: Let D ⊂ Z̃ be the union of the ramification curves. Let Ỹ
be the double cover of Z̃ ramified along D which exists by the proof of theorem 7.3 (its existence can
also be checked easily by direct computation). Let Y be the corresponding double cover of Z ramified
on f(D). The exceptional fibre of Ỹ is a string of n rational curves but there are ordinary double
points in Ỹ sitting above all the nodes in the discriminant D. Now Y is a Kleinian singularity of type
D2n so counting exceptional curves shows that Y res is also the minimal resolution of Ỹ. We denote
the exceptional fibres in Y res by F1, . . . , F2n so that F2i is the strict transform of Ei and the other
exceptionals arise from resolving the ordinary double points in Ỹ. Note that F1, . . . , F2n−2 is a string of
(-2)-curves and that F2n−1, F2n both intersect F2n−2 transversally to form the “fork” of the D2n Dynkin
diagram. We let Ci denote transverse curves to Fi and let π : Y res −→ Ỹ be the natural contraction.
We seek to form a non-commutative cyclic cover using the reflexive OỸ-module

L := π∗OY res(C1 − C2 + C3 − . . . + C2n−1).

First note that the covering involution ρ ∈ Gal Y/Z acts trivially on Pic Y res. We need a relation to
form the cyclic cover which will follow if we can show L[2] ' OỸ. This amounts to showing in Pic Y res

that
2(C1 − C2 + C3 − . . . + C2n−1) ∈ ZF1 + ZF3 + . . . + ZF2n−1.

Now computing intersection numbers gives

F1 ∼ −2C1 + C2, F3 ∼ C2 − 2C3 + C4, . . . , F2n−1 ∼ C2n−2 − 2C2n−1

so
2(C1 − C2 + C3 − . . . + C2n−1) ∼ −(F1 + F3 + . . . + F2n−1).

We observe thus that L[2] ' OỸ and so can form a cyclic cover Ã = A(Ỹ; Lρ) = OỸ ⊕Lρ. A local
inspection using proposition 7.2 shows that the ramification is indeed that of the minimal resolution of
a canonical order of type BDn.

Note that L can also be used to construct a smooth double cover X̃ of Ỹ and hence a minimal
resolution can be constructed via a skew group ring construction. The cover X̃ / Ỹ is étale away from
the double points so it is easy to compute the number of exceptional curves of X̃. The adjunction formula
also gives their self-intersection numbers from which we deduce that X̃ is the minimal resolution of a
Dn+1 singularity. Note that as in [A86, lemma 4.2], X̃ / Z̃ is Galois and has Galois group G := Z /2×Z /2.
Picking a central extension G

′
of G by µ2 and idempotent ε ∈ kµ2 as in proposition 4.4, we see that

the minimal resolution can also be constructed as Ã = εOX̃ ∗G
′
.
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McKay correspondences: To obtain the McKay correspondence using proposition 5.1, we will need
to interpret the Galois cover X̃ / Z̃ in a different fashion. To this end, let G be the group generated by

σ =
(

ζ 0
0 ζ−1

)
, τ =

(
0 1
−1 0

)
, ρ =

(−1 0
0 1

)
(9)

where ζ is a primitive (4n − 4)-th root of unity. Note that Y is the quotient of W by 〈σ, τ 〉. We let
X := W/H where H := 〈σ2, τ 〉 so that X is a type Dn+1 canonical singularity. Note that its minimal
resolution is isomorphic to X̃. Furthermore, the action of G/H ' Z /2 × Z /2 on X̃ coincides with the
action of the Galois group of X̃ / Z̃ since, they agree on X by inspection of the ramification data. It
follows that the minimal resolution Ã = εOX̃ ∗G

′
is derived equivalent to εOW ∗G′ which is a canonical

order of type BDn by theorem 3.5. Theorem 1.1 is thus verified in this case.
We also have the numerical McKay correspondence. The exceptional curves E1, . . . , En−1 are of

type I1,2 so each corresponds to a unique indecomposable reflexive A-module by theorem 6.6. On the
other hand En is type I2,1 so corresponds to two indecomposable reflexives. Finally, the module Ã gives
one more indecomposable reflexive module by proposition 6.10. This agrees with the n indecomposable
permissible modules found in [CHI, section 8.6] and the additional permissible module which splits in
two.

8.7 Type DLn

Ramification data of minimal resolution: As usual, the centre Z̃ of the minimal resolution is an
iterated blowup of Z = Spec k[[u, v]] so that the exceptional fibre of f : Z̃ −→ Z is a string of (-2)-curves
E1, . . . , En−1 followed by a (-1)-curve En. The ramification curves of the minimal resolution this time,
are E1, . . . , En−1 together with two curves, one intersecting E1 transversally and the other intersecting
En−1 and En transversally at their point of intersection. The ramification indices of all curves are 2.

Construction of minimal resolution: Let D be the union of ramification curves. We form the
double cover Ỹ of Z̃ ramified on D as in theorem 7.3 and let Y be the corresponding double cover of Z
ramified on f(D). Sitting above each of E1, . . . , En−1 is an exceptional curve of Ỹ. Sitting above En

are two exceptional curves intersecting transversally. As in the previous case, there are ordinary double
points in Ỹ sitting above all the nodes in the discriminant D. Now Y is a Kleinian singularity of type
D2n+1 so counting exceptional curves shows that Y res is also the minimal resolution of Ỹ. We denote
the exceptional fibres in Y res by F1, . . . , F2n+1 so that for i ∈ [1, n−1], F2i is the strict transform of Ei

and F1, F3, . . . , F2n−1 are exceptionals arising from the ordinary double points in Ỹ. The exceptional
curves F2n, F2n+1 come from the inverse image of En. Note that F1, . . . , F2n−2 is a string of (-2)-curves
and that F2n+1, F2n both intersect F2n−1 transversally. We let Ci denote transverse curves to Fi and let
π : Y res −→ Ỹ be the natural contraction. The covering involution ρ ∈ Gal Y/Z now acts non-trivially.
It fixes F1, . . . , F2n−1 but switches F2n and F2n+1. We seek to construct a cyclic cover using

L := π∗OY res(C1 − C2 + C3 − . . .− C2n).

This time we need to show that (L⊗ ρ∗L)∗∗ ' OỸ or in other words

(1 + ρ)(C1 − C2 + C3 − . . .− C2n) ∈ ZF1 + ZF3 + . . . + ZF2n−1.

A calculation similar to the BDn case shows that

(1 + ρ)(C1 − C2 + C3 − . . .− C2n) ∼ −(F1 + F3 + . . . + F2n−1)

so again we may form the cyclic algebra Ã = A(Ỹ : Lρ) = OỸ ⊕Lρ. It gives the correct answer by the
local computation of proposition 7.2.
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McKay correspondences: We do not know if there is a derived equivalence between the minimal
resolution and the canonical order of type DLn in theorem 3.5. However, [CHI, section 8.5] shows that
there are n + 1 indecomposable permissible modules in this case and no others. The exceptional curves
E1, . . . , En−1 are of type I1,2 whilst En is of type X2. Hence theorem 1.2 is verified in this instance too.

8.8 Type An,ζ

Ramification data of minimal resolution: The centre Z̃ of the minimal resolution is the minimal
resolution of a Kleinian singularity of type An. Let E1, . . . , En be the exceptional curves written in
order. The ramification curves are E1, . . . , En together with two other curves, one transverse to E1 and
the other transverse to En. The ramification indices are all e this time where e is the order of ζ.

Construction of minimal resolution: Let D be the union of ramification curves and Ỹ be the e-fold
cover of Z̃, totally ramified on D. Also, let Y be the corresponding e-fold cover of Z ramified on f(D)
which we note is an Ane+e−1-singularity. Also the exceptional fibre in Ỹ is a string of n rational curves
and now Ỹ has Ae−1-singularities at the nodes of the exceptional fibre. Again we have Y res is the
minimal resolution of Ỹ (on counting and noting n + (n + 1)(e − 1) = ne + e − 1). The exceptional
curves in Y res form a string F1, . . . , Fne+e−1 where Fie is the strict transform of Ei. Let Ci be a curve
on Y res cutting E transversally and π denote the contraction Y res −→ Ỹ. Again the Galois group of
Y/Z acts trivially on Y res so we seek an e-torsion Weil divisor in Cl Ỹ. Let

L := π∗OY res(
n∑

i=0

Cie+1 −
n∑

i=1

Cie).

Let J denote the subgroup of Pic Y res generated by {Fj |e - j}. To show L[e] ' OỸ it suffices to verify
that e(

∑n
i=0 Cie+1 −

∑n
i=1 Cie) ∈ J . We compute

(e− 1)F1 + (e− 2)F2 + . . . + Fe−1 ∼ −eC1 + Ce

(e− 1)Fie+1 + (e− 2)Fie+2 + . . . + Fie+e−1 ∼ (e− 1)Cie − eCie+1 + Cie+e

(e− 1)Fne+1 + (e− 2)Fne+2 + . . . + Fne+e−1 ∼ (e− 1)Cne − eCne+1

for i ∈ [1, n − 1]. Summing the above equations for all i shows that L is indeed e-torsion and that
the corresponding cyclic algebra A(Ỹ; Lσ) = OỸ ⊕Lσ ⊕ . . . ⊕ L

[e−1]
σ is well-defined. It has the correct

ramification locally so, by proposition 7.2 gives the minimal resolution. As for types BDn, we can also
use L to form a smooth e-fold cover X̃ of Ỹ and so construct the minimal resolution Ã as a skew group
ring εOX̃ ∗G

′
as in proposition 4.4. Note that the exceptional curves of X̃ have self-intersection -2 and

so X̃ is isomorphic to the minimal resolution of a type An singularity. As in the type BDn case, X̃ / Z̃
is Galois with Galois group Z /e× Z /e.

McKay correspondences: We use proposition 5.1 with G ⊂ GL2 the group generated by

σ =
(

ζ 0
0 ζ−1

)
, τ =

(
1 0
0 ζn+1

)

where ζ is a primitive (n + 1)e-th root of unity. We let H = 〈σe 〉 so that G := G/H ' Z /e × Z /e.
Note that the minimal resolution of X := W/H is indeed X̃. We lift the central extension G

′
of G to a

central extension G′ of G as in section 3. Note that by theorem 3.5, A := εOW ∗G′ is a canonical order
of type An,ζ . Furthermore, proposition 5.1 shows it is derived equivalent to Ã = εOX̃ ∗G

′
.

All the exceptional curves here are of type I1,e so theorem 6.6 and 6.10 show that there are n + 1
indecomposable reflexive A-modules. This matches with the n+1 indecomposable permissible modules
found in [CHI, section 8.8].
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