Rotations & reflections

Aim lecture: We use the spectral thm for normal operators to show how any orthogonal matrix can be built up from rotations & reflections.

In this lecture we work over the fields $\mathbb{F} = \mathbb{R} \& \mathbb{C}$. We let

$$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

the 2 × 2-matrix which rotates anti-clockwise about $\binom{0}{0}$ through angle θ . Note that det $R_{\theta}=1$ & that R_{π} is the diagonal matrix $-I_2=(-1)\oplus(-1)$.

Defn

Let $A \in M_{nn}(\mathbb{R})$. We say that A is a *rotation* matrix if it is orthogonally similar to $I_{n-2} \oplus R_{\theta}$ for some θ . We say that A is a *reflection* matrix if it is orthogonally similar to $I_{n-1} \oplus (-1)$.

Rem Note that this generalises the usual notions in dim 2 & 3. Also, rotations are orthogonal with determinant 1 whilst reflections are orthogonal with det -1.

Orthogonal matrices in O_2 , O_3

Recall that orthogonal matrices have det ± 1 . We defer the proof of

Theorem

- Let $A \in O_2$. If det A = 1 then A is orthog sim to R_{θ} for some θ (so $tr A = 2\cos\theta$) & if det A = -1 then A is a reflection.
- ② Let $A \in O_3$. If det A = 1 then A is orthog sim to $(1) \oplus R_{\theta}$ (so $tr A = 1 + 2\cos\theta$) & if det A = -1 then A is orthog sim to $(-1) \oplus R_{\theta}$ (so $tr A = -1 + 2\cos\theta$) for some θ .

Corollary

Let $A, B \in M_{22}(\mathbb{R})$ or $A, B \in M_{33}(\mathbb{R})$. If A, B are rotation matrices, then so is AB. If A, B are reflection matrices, then AB is a rotn.

Proof. In both cases, AB is an orthog matrix with det $(\pm 1)^2 = 1$ so the thm gives the result.

Example

E.g. Verify that the following is a rotation matrix & determine the axis of rotn & angle of rotn.

$$A = \frac{1}{3} \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ 2 & -2 & -1 \end{pmatrix}$$

Α

E-values & e-vectors of real matrices

Recall the conjugation map $\overline{(\cdot)}:\mathbb{C}^n\longrightarrow\mathbb{C}^n$ is a conjugate linear isomorphism. Furthermore, for $\mathbf{v},\mathbf{v}'\in\mathbb{C}^n$ we have $\|\overline{\mathbf{v}}\|=\|\mathbf{v}\|$ & $\mathbf{v}\perp\mathbf{v}'\Longleftrightarrow\overline{\mathbf{v}}\perp\overline{\mathbf{v}'}$.

Prop 1

Let $A \in M_{nn}(\mathbb{R}) \& \lambda \in \mathbb{C}$.

- The conjugation map restricts to a conjugate linear isomorphism $\overline{(\cdot)}: E_{\lambda} \longrightarrow E_{\overline{\lambda}}$, that is, $\overline{E_{\lambda}} = E_{\overline{\lambda}}$. In particular, λ is an e-value of A iff $\overline{\lambda}$ is.
- ② The conjugation map sends any basis for E_{λ} to a basis for $E_{\overline{\lambda}}$.

Proof. 1) Let $\mathbf{v} \in E_{\lambda}$. Then

$$A\overline{\mathbf{v}} = \overline{A} \ \overline{\mathbf{v}} = \overline{A\mathbf{v}} = \overline{\lambda}\overline{\mathbf{v}} = \overline{\lambda} \ \overline{\mathbf{v}}.$$

Hence $\overline{E_{\lambda}} \subseteq E_{\overline{\lambda}}$ & the reverse inclusion follows from this result applied to $\overline{\lambda}$. Conjugation is injective so 1) follows.

2) follows from the fact that conjugate lin isom take bases to bases (just as is the case for lin isom). The proof is a mild modification of the lin case.

E-theory of R_{θ}

To study rotations, we need to know the e-theory for R_{θ} well.

Prop 2

We may unitarily diagonalise (over $\mathbb C$) $R_ heta=U((e^{i heta})\oplus (e^{-i heta}))U^*$ where

$$U = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}} \end{pmatrix}.$$

In particular, $E_{e^{i\theta}} = \mathbb{C}\left(\frac{\frac{1}{\sqrt{2}}}{\frac{i}{\sqrt{2}}}\right), \quad E_{e^{-i\theta}} = \mathbb{C}\left(\frac{\frac{1}{\sqrt{2}}}{\frac{i}{\sqrt{2}}}\right) = \mathbb{C}\left(\frac{\frac{1}{\sqrt{2}}}{\frac{i}{\sqrt{2}}}\right).$

Proof. easy ex. Let's just check the $e^{i\theta}$ -e-space and use Prop 1.

General classification of orthogonal matrices

Theorem

Let $A \in O_n$.

- If det A = 1 then A is orthogonally similar to $I_r \oplus R_{\theta_1} \oplus \ldots \oplus R_{\theta_s}$ for some $r \in \mathbb{N}, \theta_1, \ldots, \theta_s \in \mathbb{R}$.
- ② If det A = -1 then A is orthogonally similar to $(-1) \oplus I_r \oplus R_{\theta_1} \oplus \ldots \oplus R_{\theta_s}$ for some $r \in \mathbb{N}, \theta_1, \ldots, \theta_s \in \mathbb{R}$.

Proof. This proof is a classic example of the use of complex numbers to answer questions about reals!

Note that A viewed as complex matrix is unitary & hence normal. Hence the e-values have modulus 1 & we may apply the spectral thm for normal operators to conclude there is an A-invariant orthogonal direct sum decomposition into e-spaces of the form

$$\mathbb{C}^n = E_1 \oplus E_{-1} \oplus E_{e^{i\theta_1}} \oplus \overline{E_{e^{i\theta_1}}} \oplus \ldots \oplus E_{e^{i\theta_s}} \oplus \overline{E_{e^{i\theta_s}}}$$

where we used the propn to re-write some of the e-spaces.

Alternate version of theorem

The theorem will follow if we can find an orthonormal basis of *real* vectors (abbrev to real orthonormal basis) such that wrt the corresp co-ord system $P \in O_n$, the representing matrix P^TAP is a direct sum of rotation matrices & matrices of the form $\pm I$. Indeed, the only thing left to do is replace all copies of $-I_2$ with R_π to get the desired final form. The thm thus follows from the following more precise result.

Theorem (Version 2 for purposes of proof)

- There are real orthonormal bases for E_1, E_{-1} .
- **3** There is a real orthonormal basis for $V_j = E_{e^{i\theta_j}} \oplus \overline{E_{e^{i\theta_j}}}$ such that the matrix representing A restricted to V_j wrt the corresp the co-ord system is $R_{\theta_j} \oplus \ldots \oplus R_{\theta_j}$ (there are dim $E_{e^{i\theta_j}}$ copies of R_{θ_j}).

Proof. 1) Note $E_1 = \ker(A - I)$, the kernel of a matrix with real entries, so we may find an orthonormal basis for it consisting of real vectors. Sim E_{-1} has an orthonormal basis of real vectors. Part 1) follows.

Proof cont'd

2) To simplify notn, we drop the subscript j so $\theta=\theta_j, V=V_j$ etc. Let $\{\mathbf{v}_1,\ldots,\mathbf{v}_m\}$ be an orthonormal basis for $E_{e^{i\theta}}$ so $\{\mathbf{v}_1,\ldots,\mathbf{v}_m,\overline{\mathbf{v}_1},\ldots,\overline{\mathbf{v}_m}\}$ is an orthonormal basis for V. Hence V is an orthog direct sum of the subspaces $W_I=\operatorname{Span}(\mathbf{v}_I,\overline{\mathbf{v}_I})$ so it suffices to find a real orthonormal co-ord system for W_I . Using the o/n co-ord system $C=(\mathbf{v}_I,\overline{\mathbf{v}_I}):\mathbb{C}^2\longrightarrow W_I$, the representing matrix is

$$C^{-1} \circ T_A \circ C = (e^{i\theta}) \oplus (e^{-i\theta})$$

where $T_A:W_I\longrightarrow W_I$ is the left multn by A on W_I . Prop 2 then shows that for

$$U = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{i}{\sqrt{2}} & \frac{i}{\sqrt{2}} \end{pmatrix} \quad \& \quad C_{\mathbb{R}} = CU^*$$

we have

$$C_{\mathbb{R}}^{-1}\circ T_{A}\circ C_{\mathbb{R}}=UC^{-1}\circ T_{A}\circ CU^{*}=U((e^{i\theta})\oplus (e^{-i\theta}))U^{*}=R_{\theta}$$

Hence the thm follows from

Final lemma to complete proof

Lemma

The co-ord system $C_{\mathbb{R}}$ is 1) real and, 2) orthonormal.

Note that
$$C_{\mathbb{R}} = \begin{pmatrix} \frac{\mathbf{v}_I + \overline{\mathbf{v}_I}}{\sqrt{2}} & i \frac{\mathbf{v}_I - \overline{\mathbf{v}_I}}{\sqrt{2}} \end{pmatrix} = (\mathbf{w}_+ \mathbf{w}_-)$$
 say.

For 1), we just check $\overline{\mathbf{w}_{\pm}} = \mathbf{w}_{\pm}$.

For 2), just note that $C_{\mathbb{R}}$ is a composite of isomorphisms of inner product spaces, so is an isomorphism of inner product spaces itself.