
Rotations & reflections

Aim lecture: We use the spectral thm for normal operators to show how any
orthogonal matrix can be built up from rotations & reflections.

In this lecture we work over the fields F = R & C. We let

Rθ =

(
cos θ − sin θ
sin θ cos θ

)
the 2× 2-matrix which rotates anti-clockwise about

(
0
0

)
through angle θ. Note

that det Rθ = 1 & that Rπ is the diagonal matrix −I2 = (−1)⊕ (−1).

Defn

Let A ∈ Mnn(R). We say that A is a rotation matrix if it is orthogonally similar to
In−2 ⊕ Rθ for some θ. We say that A is a reflection matrix if it is orthogonally
similar to In−1 ⊕ (−1).

Rem Note that this generalises the usual notions in dim 2 & 3. Also, rotations are
orthogonal with determinant 1 whilst reflections are orthogonal with det -1.
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Orthogonal matrices in O2,O3

Recall that orthogonal matrices have det ±1. We defer the proof of

Theorem
1 Let A ∈ O2. If det A = 1 then A is orthog sim to Rθ for some θ (so

tr A = 2 cos θ) & if det A = −1 then A is a reflection.

2 Let A ∈ O3. If det A = 1 then A is orthog sim to (1)⊕ Rθ (so
tr A = 1 + 2 cos θ) & if det A = −1 then A is orthog sim to (−1)⊕ Rθ (so
tr A = −1 + 2 cos θ) for some θ.

Corollary

Let A,B ∈ M22(R) or A,B ∈ M33(R). If A,B are rotation matrices, then so is
AB. If A,B are reflection matrices, then AB is a rotn.

Proof. In both cases, AB is an orthog matrix with det (±1)2 = 1 so the thm
gives the result.
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Example

E.g. Verify that the following is a rotation matrix & determine the axis of rotn &
angle of rotn.

A =
1

3

1 2 −2
2 1 2
2 −2 −1


A
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E-values & e-vectors of real matrices

Recall the conjugation map (·) : Cn −→ Cn is a conjugate linear isomorphism.
Furthermore, for v, v′ ∈ Cn we have ‖v‖ = ‖v‖ & v ⊥ v′ ⇐⇒ v ⊥ v′.

Prop 1

Let A ∈ Mnn(R) & λ ∈ C.

1 The conjugation map restricts to a conjugate linear isomorphism
(·) : Eλ −→ Eλ, that is, Eλ = Eλ. In particular, λ is an e-value of A iff λ is.

2 The conjugation map sends any basis for Eλ to a basis for Eλ.

Proof. 1) Let v ∈ Eλ. Then

Av = A v = Av = λv = λ v.

Hence Eλ ⊆ Eλ & the reverse inclusion follows from this result applied to λ.
Conjugation is injective so 1) follows.

2) follows from the fact that conjugate lin isom take bases to bases (just as is the
case for lin isom). The proof is a mild modification of the lin case.
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E-theory of Rθ

To study rotations, we need to know the e-theory for Rθ well.

Prop 2

We may unitarily diagonalise (over C) Rθ = U((e iθ)⊕ (e−iθ))U∗ where

U =

(
1√
2

1√
2

− i√
2

i√
2

)
.

In particular, Ee iθ = C
( 1√

2

− i√
2

)
, Ee−iθ = C

( 1√
2

− i√
2

)
= C

( 1√
2
i√
2

)
.

Proof. easy ex. Let’s just check the e iθ-e-space and use Prop 1.

Daniel Chan (UNSW) Lecture 42: Orthogonal matrices & rotations Semester 2 2013 5 / 9



General classification of orthogonal matrices

Theorem
Let A ∈ On.

1 If det A = 1 then A is orthogonally similar to Ir ⊕ Rθ1 ⊕ . . .⊕ Rθs for some
r ∈ N, θ1, . . . , θs ∈ R.

2 If det A = −1 then A is orthogonally similar to (−1)⊕ Ir ⊕Rθ1 ⊕ . . .⊕Rθs for
some r ∈ N, θ1, . . . , θs ∈ R.

Proof. This proof is a classic example of the use of complex numbers to answer
questions about reals!

Note that A viewed as complex matrix is unitary & hence normal. Hence the
e-values have modulus 1 & we may apply the spectral thm for normal operators to
conclude there is an A-invariant orthogonal direct sum decomposition into
e-spaces of the form

Cn = E1 ⊕ E−1 ⊕ Ee iθ1 ⊕ Ee iθ1 ⊕ . . .⊕ Ee iθs ⊕ Ee iθs

where we used the propn to re-write some of the e-spaces.
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Alternate version of theorem

The theorem will follow if we can find an orthonormal basis of real vectors (abbrev
to real orthonormal basis) such that wrt the corresp co-ord system P ∈ On, the
representing matrix PTAP is a direct sum of rotation matrices & matrices of the
form ±I . Indeed, the only thing left to do is replace all copies of −I2 with Rπ to
get the desired final form. The thm thus follows from the following more precise
result.

Theorem (Version 2 for purposes of proof)
1 There are real orthonormal bases for E1,E−1.

2 There is a real orthonormal basis for Vj = Ee iθj ⊕ Ee iθj such that the matrix
representing A restricted to Vj wrt the corresp the co-ord system is
Rθj ⊕ . . .⊕ Rθj (there are dim Ee iθj copies of Rθj ).

Proof. 1) Note E1 = ker(A− I ), the kernel of a matrix with real entries, so we
may find an orthonormal basis for it consisting of real vectors. Sim E−1 has an
orthonormal basis of real vectors. Part 1) follows.
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Proof cont’d

2) To simplify notn, we drop the subscript j so θ = θj ,V = Vj etc. Let
{v1, . . . , vm} be an orthonormal basis for Ee iθ so {v1, . . . , vm, v1, . . . , vm} is an
orthonormal basis for V . Hence V is an orthog direct sum of the subspaces
Wl = Span(vl , vl) so it suffices to find a real orthonormal co-ord system for Wl .
Using the o/n co-ord system C = (vl vl) : C2 −→Wl , the representing matrix is

C−1 ◦ TA ◦ C = (e iθ)⊕ (e−iθ)

where TA : Wl −→Wl is the left multn by A on Wl . Prop 2 then shows that for

U =

(
1√
2

1√
2

− i√
2

i√
2

)
& CR = CU∗

we have

C−1R ◦ TA ◦ CR = UC−1 ◦ TA ◦ CU∗ = U((e iθ)⊕ (e−iθ))U∗ = Rθ

Hence the thm follows from
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Final lemma to complete proof

Lemma

The co-ord system CR is 1) real and, 2) orthonormal.

Note that CR =
(

vl+vl√
2

i vl−vl√
2

)
= (w+w−) say.

For 1), we just check w± = w±.
For 2), just note that CR is a composite of isomorphisms of inner product spaces,
so is an isomorphism of inner product spaces itself.
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