Rotations & reflections

Aim lecture: We use the spectral thm for normal operators to show how any
orthogonal matrix can be built up from rotations & reflections.

In this lecture we work over the fields F =R & C. We let
cosf) —sind
Ro = (sin0 cos 6 )

the 2 x 2-matrix which rotates anti-clockwise about (J) through angle 6. Note
that det Ry = 1 & that Ry is the diagonal matrix —h = (=1) @ (-1).

Let A € M,,(R). We say that A is a rotation matrix if it is orthogonally similar to
I,—> @& Ry for some 6. We say that A is a reflection matrix if it is orthogonally
similar to /,_1 & (—1).

Rem Note that this generalises the usual notions in dim 2 & 3. Also, rotations are
orthogonal with determinant 1 whilst reflections are orthogonal with det -1.
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Orthogonal matrices in O, O3

Recall that orthogonal matrices have det +£1. We defer the proof of

Theorem

Q Let A€ O,. Ifdet A=1 then A is orthog sim to Ry for some 6 (so
tr A=2cosf) & ifdet A = —1 then A is a reflection.

@ Let Ac O;. Ifdet A= 1 then A is orthog sim to (1) @ Ry (so
trA=1+2cosf) & ifdet A= —1 then A is orthog sim to (—1) ® Ry (so
tr A= —1+2cos6) for some 6.

Corollary

Let A, B € Mx(R) or A, B € M33(R). If A, B are rotation matrices, then so is
AB. If A, B are reflection matrices, then AB is a rotn.

| \

Proof. In both cases, AB is an orthog matrix with det (£1)? = 1 so the thm
gives the result.
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E.g. Verify that the following is a rotation matrix & determine the axis of rotn &
angle of rotn.
1 2 =2
A=-12 1 2
2 -2 -1
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E-values & e-vectors of real matrices

Recall the conjugation map () : C" — C" is a conjugate linear isomorphism.
Furthermore, for v,v’ € C" we have |[V|| = |lv|| & v L v/ <=V L v/

Let A€ Man(R) & A € C.

@ The conjugation map restricts to a conjugate linear isomorphism _
(1) : Ex — Ey, thatis, Ex = E5. In particular, X is an e-value of A iff A is.

@ The conjugation map sends any basis for Ey to a basis for Ex.

Proof. 1) Let v € Ej. Then
AV=AV=Av=JAv=2)V.

Hence Ey C E5; & the reverse inclusion follows from this result applied to .
Conjugation is injective so 1) follows.

2) follows from the fact that conjugate lin isom take bases to bases (just as is the
case for lin isom). The proof is a mild modification of the lin case.
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E-theory of Ry

To study rotations, we need to know the e-theory for Ry well.

Prop 2

We may unitarily diagonalise (over C) Ry = U((e'®) @ (e="?))U* where

In particular, Ego = C ( %@/ ), Ee-io =C( */%, )=C (%)
- -L 5

S

Proof. easy ex. Let's just check the e’-e-space and use Prop 1.
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General classification of orthogonal matrices

Let A€ O,.
Q /fdet A =1 then A is orthogonally similar to I, ©® Rs, © ... D Rg, for some
reN;b,...,0s € R.
@ Ifdet A= —1 then A is orthogonally similar to (—1)® I, & Rg, & ... D Ry, for
somer € N, 6,...,0s € R.

Proof. This proof is a classic example of the use of complex numbers to answer
questions about reals!

Note that A viewed as complex matrix is unitary & hence normal. Hence the
e-values have modulus 1 & we may apply the spectral thm for normal operators to
conclude there is an A-invariant orthogonal direct sum decomposition into
e-spaces of the form

Cc" = EEDE_1® Eeie1 (&%) Eeie1 S...P EeiGS &b Eeiss

where we used the propn to re-write some of the e-spaces.
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Alternate version of theorem

The theorem will follow if we can find an orthonormal basis of real vectors (abbrev
to real orthonormal basis) such that wrt the corresp co-ord system P € O,, the
representing matrix P7 AP is a direct sum of rotation matrices & matrices of the
form +£/. Indeed, the only thing left to do is replace all copies of —/, with R, to
get the desired final form. The thm thus follows from the following more precise
result.

Theorem (Version 2 for purposes of proof)

@ There are real orthonormal bases for Ey, E_1.

@ There is a real orthonormal basis for V; = E is; © E_ie; such that the matrix
representing A restricted to V; wrt the corresp the co-ord system is
Ro; © ... ® Ry, (there are dim E_io; copies of Ry, ).

Proof. 1) Note E; = ker(A — /), the kernel of a matrix with real entries, so we
may find an orthonormal basis for it consisting of real vectors. Sim E_; has an
orthonormal basis of real vectors. Part 1) follows.
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2) To simplify notn, we drop the subscript j so 6 = 6}, V = Vj etc. Let
{v1,...,Vm} be an orthonormal basis for E.ie so {vi,...,Vvpy,V1,...,Vy} is an
orthonormal basis for V. Hence V is an orthog direct sum of the subspaces

W, = Span(v;, ;) so it suffices to find a real orthonormal co-ord system for W;.
Using the o/n co-ord system C = (v; ¥j) : C2 — W, the representing matrix is

CloTaoC=(e)®(e7?)

where Ty : W) — W, is the left multn by A on W,. Prop 2 then shows that for
1 1
U:(_f%- ﬁ) & Cp=CU*

we have
CaloTaoCGr=UC oTaoCU = U((e) @ (e )U" =Ry

Hence the thm follows from
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Final lemma to complete proof

The co-ord system Cg is 1) real and, 2) orthonormal.

Note that Cg = ("’\J/%T’ i"’\;;’) = (wiw_) say.

For 1), we just check wx = wy.
For 2), just note that Cg is a composite of isomorphisms of inner product spaces,

so is an isomorphism of inner product spaces itself.
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