Chapter overview

- \(f : \mathbb{R}^2 \rightarrow \mathbb{R} \) defined by \(f(x,y) = 2x - 3y \) is example of a linear function, \(g(x,y) = x^2 - 5y \) is not.
- In this chapter, study more generally linear transformations \(T : \mathbb{R}^m \rightarrow \mathbb{R}^n \).
- Even more gen, study linear \(T : V \rightarrow W \) where \(V, W = \text{vector spaces} / \mathbb{F} \). Recall \(V \) is the domain of \(T \) & \(W \) the codomain of \(T \).
- We’ll generalise systems of linear equations \(Ax = b \) to “linear equations” of form \(T x = b \) where \(b \in W, x \in V \).

Often abbrev \(T(x) = Tx \).
Addition Condition

To define linear map, first consider

Addition Condition.

We say $T : V \rightarrow W$ satisfies the **addition condition**, if

$$T(v + v') = T(v) + T(v') \text{ for all } v, v' \in V.$$

E.g. $T : \mathbb{R}^2 \rightarrow \mathbb{R}$ defined by $T\begin{pmatrix} x \\ y \end{pmatrix} = 2x - 3y$ satisfies the addn condn since given $\begin{pmatrix} x \\ y \end{pmatrix}, \begin{pmatrix} x' \\ y' \end{pmatrix} \in \mathbb{R}^2$

$$T \left(\begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} x' \\ y' \end{pmatrix} \right) =$$

$$T \begin{pmatrix} x \\ y \end{pmatrix} + T \begin{pmatrix} x' \\ y' \end{pmatrix} =$$

Warning The $+$ on the two sides of the equation are different!
Scalar Multiplication Condition

We say \(T : V \rightarrow W \) satisfies the \textbf{scalar multiplication condition}, if

\[
T(\lambda v) = \lambda T(v) \quad \text{for all } \lambda \in \mathbb{F} \text{ and } v \in V.
\]

\textbf{E.g.} \(T : \mathbb{R}^2 \rightarrow \mathbb{R} \) defined by \(T\begin{pmatrix} x \\ y \end{pmatrix} = 2x - 3y \) satisfies the scalar multn condn since given \(\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2, \lambda \in \mathbb{R} \)

\[
T \left(\lambda \begin{pmatrix} x \\ y \end{pmatrix} \right) = \quad \lambda T \begin{pmatrix} x \\ y \end{pmatrix} =
\]

\textbf{Warning} The scalar multn on the two sides of the eqn are different!
Linear Transformation

Definition

Let $V, W = \text{vector spaces} / \mathbb{F}$. A function $T : V \to W$ is called a **linear map** or a **linear transformation** if following both hold.

Addition Condition.

$T(v + v') = T(v) + T(v')$ for all $v, v' \in V$, and

Scalar Multiplication Condition.

$T(\lambda v) = \lambda T(v)$ for all $\lambda \in \mathbb{F}$ and $v \in V$.

E.g. $T : \mathbb{R}^2 \longrightarrow \mathbb{R}$ defined by $T\begin{pmatrix} x \\ y \end{pmatrix} = 2x - 3y$ is linear.
Sample question: showing a function is linear.

Example

Show that the function $T : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ defined by

$$T(x) = \begin{pmatrix} 4x_2 - 3x_3 \\ x_1 + 2x_2 \end{pmatrix} \quad \text{for} \quad x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3$$

is a linear map.

Solution
Proposition.

If $T : V \rightarrow W$ is a linear map, then $T(0) = 0$.

Proof. $T(0) = T(00) = 0 \cdot T(0) = 0$.

Example

Show that the function $T : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ defined by $T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ x_2 - 2 \\ x_1 \end{pmatrix}$ is not linear.

Soln
Another non-linear example

Example

Show that the function $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by

$$T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 + x_2 \\ x_2^2 \end{pmatrix}$$

is not linear.

Solution

Checking $T(0) = 0$ here tells you nothing about linearity. Suffice check that $T(\lambda \mathbf{v}) = \lambda T \mathbf{v}$ fails for single choice of pair λ, \mathbf{v}.
Alternate characterisation of linearity

We can combine the addn condn & scalar multn condn into one!

Theorem

The function $T : V \rightarrow W$ is a linear map iff for all $\lambda \in \mathbb{F}$ and $v_1, v_2 \in V$

$$T(\lambda v_1 + v_2) = \lambda T(v_1) + T(v_2).$$

Remark This means that a linear map T has the special property that it sends the line $x = a + \lambda v$ to the line $x = T a + \lambda T v$ or point $T a$ if $T v = 0$.

E.g. Differentation is a linear map. More precisely, we define $T : \mathbb{P} \rightarrow \mathbb{P}$ by $Tp = \frac{dp}{dx}$. Then for $p, q \in \mathbb{P}, \lambda \in \mathbb{R}$

$$T(\lambda p + q) =$$
Theorem

If $T : V \to W$ is linear map, $v_1, \ldots, v_n \in V$ & $\lambda_1, \ldots, \lambda_n$ are scalars, then

$$T(\lambda_1 v_1 + \cdots + \lambda_n v_n) = \lambda_1 T(v_1) + \cdots + \lambda_n T(v_n).$$

Example

If $T : \mathbb{R}^2 \to \mathbb{R}^2$ a function such that

$$T \begin{pmatrix} 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \quad T \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \quad T \begin{pmatrix} 3 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}.$$

Show that T is not linear.

Solution

Daniel Chan (UNSW)

7.1 Introduction to Linear Maps
Example

Given that T is a linear map and

$T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad T \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \end{pmatrix}, \quad T \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \end{pmatrix}.$

Find $T \begin{pmatrix} x \\ y \\ z \end{pmatrix}.$

Solution
Linear maps are determined by the values on a spanning set

Previous eg illustrates the following general result.

Theorem

Let $T : V \rightarrow W$ be linear & $V = \text{span}(v_1, \ldots, v_m)$. Then T is completely determined by the m values $T v_1, \ldots, T v_m$.

Compare with the following:

An affine linear function $f(x) = mx + b$ is determined by two of its values $f(x_1), f(x_2)$, since its graph is a line which is determined by two points.
Matrices define Linear Maps

Theorem

For each $m \times n$ matrix A, the function $T_A : \mathbb{R}^n \to \mathbb{R}^m$, defined by

$$T_A(x) = Ax \quad \text{for} \quad x \in \mathbb{R}^n,$$

is a linear map called the **associated linear map**.

Proof.
Example of reflection

Example

Let $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, describe the associated linear map T_A geometrically as a mapping $\mathbb{R}^2 \rightarrow \mathbb{R}^2$.

Solution
Matrix Representation Theorem

Conversely, given linear $T : \mathbb{R}^n \to \mathbb{R}^m$, we can find an $m \times n$ matrix A such that $T(x) = Ax$ for all $x \in \mathbb{R}^n$. In this case, we say A is a matrix representing T.

Example

Given that $T : \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + 2y \\ 2x - y \\ y \end{pmatrix}$ is linear. Find the matrix A representing T.

Solution
Theorem

Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map and let the vectors e_j for $1 \leq j \leq n$ be the standard basis vectors for \mathbb{R}^n. Then the $m \times n$ matrix

$$A = (Te_1 \mid Te_2 \mid \ldots \mid Te_n)$$

has the property that

$$T(x) = Ax \text{ for all } x \in \mathbb{R}^n.$$

E.g. In the example of the previous slide,

$$Te_1 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \quad Te_2 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

so the representing matrix is
A 5-point star with vertices $A(1, 5), B(4, 3), C(3, -1), D(-1, -1)$ and $E(-2, 3)$.
Example

Find and draw the image of the 5-point star under the linear map T_M defined by the matrix $M = \begin{pmatrix} 0.5 & 0 \\ 0 & 2 \end{pmatrix}$.

Solution
Solution (Continued)
Rotation about 0 is linear

Consider the map R_α, which rotates the \mathbb{R}^2 plane through an angle α anticlockwise about the origin.

One can show geometrically that R_α is a linear map see Section 7.3. example 3.

Example
Find the matrix A representing R_α.

Solution
Projection onto b is linear

Recall given $b \in \mathbb{R}^n$ we have a projection map $\text{proj}_b : \mathbb{R}^n \rightarrow \mathbb{R}^n$ which sends $x \mapsto \text{proj}_b x$.

Proposition

\[
\text{proj}_b x = \frac{1}{|b|^2} bb^T x
\]

Hence proj_b is linear being the linear map associated to the matrix

\[
A = \frac{1}{|b|^2} bb^T.
\]

Proof.

Note

\[
Ax = \frac{1}{|b|^2} bb^T x = \frac{1}{|b|^2} b(b \cdot x) = \frac{b \cdot x}{|b|^2} b = \text{proj}_b x
\]

from the formula for $\text{proj}_b x$ given in MATH1131.
Let $\mathbf{b} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $T = \text{proj}_b : \mathbb{R}^2 \to \mathbb{R}^2$.

i) Find the matrix A representing T. ii) Check your answer by computing the linear map associated to the matrix A you found.
Kernels of linear maps

Let \(T : V \to W \) be a linear map.

Proposition-Definition

The **kernel** of \(T \) (written \(\ker(T) \) or \(\ker T \)) is the set,

\[\ker(T) = \{ v \in V \mid T(v) = 0 \} \subseteq V. \]

Let \(A \in M_{mn}(\mathbb{R}) \& \ T_A : \mathbb{R}^n \to \mathbb{R}^m \) be the assoc linear map. We define

\[\ker A = \ker T_A = \{ v \in \mathbb{R}^n : Av = 0 \}. \]

\(\ker T \) is a subspace of \(V \).

E.g. Is \(\begin{pmatrix} 1 \\ 2 \end{pmatrix} \) in \(\ker(2 - 1) \)?

E.g. Consider the differentiation map \(T : \mathbb{P} \to \mathbb{P}, (Tp)(x) = p'(x). \)
\(\ker T = \{ p \in \mathbb{P} \mid \frac{dp}{dx} = 0 \} = \mathbb{P}_0 \) the subspace of all constant polynomials.
Proof that kernels are subspaces

Let $T : V \rightarrow W$ be a linear map. We prove that $\ker T$ is a subspace of V by checking closure axioms.

Proof.
Let $T : V \rightarrow W$ be a linear map.

Proposition-Definition

The **image** of T is the set of all function values of T, that is,

$$\text{im}(T) = \{ w \in W : w = T(v) \text{ for some } v \in V \} \subseteq W.$$

Let $A \in M_{mn}(\mathbb{R})$ & $T_A : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ be the assoc linear map. We define

$$\text{im } A = \text{im } T_A = \{ b \in \mathbb{R}^m : b = Ax \text{ for some } x \in \mathbb{R}^n \} = \text{col}(A).$$

$\text{im } T$ is a subspace of W.

Remark Proof omitted, but note we already know $\text{col}(A)$ is a subspace as it is the span of the columns of A.
Verifying whether or not vectors lie in the image

Example

Let \(A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 2 \end{pmatrix} \), \(\mathbf{b} = \begin{pmatrix} 3 \\ 1 \\ 3 \end{pmatrix} \). Is \(\mathbf{b} \in \text{im } A \)?

Solution

The question amounts to asking: Can we write \(\mathbf{b} = A\mathbf{x} \) for some \(\mathbf{x} \in \mathbb{R}^2 \)? i.e. Can we solve \(A\mathbf{x} = \mathbf{b} \).
Example
Let \[
\begin{pmatrix}
1 & 2 & 3 & 1 \\
2 & 4 & 7 & 1 \\
1 & 2 & 2 & 2
\end{pmatrix}
\]. Find bases for \(\text{ker}(A) \) and \(\text{im}(A) = \text{col}(A) \).

Solution
\[
\begin{pmatrix}
1 & 2 & 3 & 1 \\
2 & 4 & 7 & 1 \\
1 & 2 & 2 & 2
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 2 & 3 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & -1 & 1
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 2 & 3 & 1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 0
\end{pmatrix}
= U
\]

The row echelon form \(U \) has first & third columns leading.
Solution (Continued)
Why study kernels & image?

$\text{im } T$ tells you about existence of solutions. $T \mathbf{x} = \mathbf{b}$ has a solution iff $\mathbf{b} \in \text{im } T$.

$\text{ker } T$ tells you about uniqueness of solutions. $T \mathbf{x} = \mathbf{0}$ has unique solution $\mathbf{x} = \mathbf{0}$ iff $\text{ker } T = \{0\}$. We’ll see later, that it also tells you about solutions to $T \mathbf{x} = \mathbf{b}$.
Let $T : V \rightarrow W$ be a linear map & A a matrix with associated linear map T_A.

Definition

- The **nullity** of T is $\text{nullity}(T) = \dim \ker(T)$.
- The **nullity** of A is $\text{nullity}(A) = \text{nullity}(T_A) = \dim \ker(A)$.
- The **rank** of T is $\text{rank}(T) = \dim \text{im}(T)$.
- The **rank** of A is $\text{rank}(A) = \text{rank}(T_A) = \dim \text{im}(A)$.
Example (Continued from the example on p.30)

Let \(A = \begin{pmatrix} 1 & 2 & 3 & 1 \\ 2 & 4 & 7 & 1 \\ 1 & 2 & 2 & 2 \end{pmatrix} \). Find \(\text{nullity}(A) \) and \(\text{rank}(A) \).

Solution

A basis for \(\text{im} \ A \) was

Recall a basis for \(\text{ker} \ A \) had

Note that the basis vectors for \(\text{im} \ A \) corresponded to the leading columns of the row-echelon form \(U \) whilst the basis vectors for \(\text{ker} \ A \) corresponded to the non-leading columns.
The previous examples illustrates

Key Lemma

Let A be an $m \times n$ matrix which reduces to a row-echelon form U.

1. $\text{nullity}(A) = \text{no. parameters in the general soln to } Ax = 0$
 $= \text{the number of non-leading columns of } U.$

2. $\text{rank}(A) = \text{the maximal no. independent columns of } A$
 $= \text{the number of leading columns of } U.$
Rank-Nullity Theorem

Our key lemma gives

Theorem (Rank-nullity Theorem for Matrices)

If A is an $m \times n$ matrix, then

$$\text{rank}(A) + \text{nullity}(A) = n.$$

Proof.

This can be used to prove more generally,

Theorem (Rank-nullity Theorem for Linear Maps)

Let $T : V \rightarrow W$ be a linear map with V finite dimensional. Then

$$\text{rank}(T) + \text{nullity}(T) = \text{dim}(V).$$
Example of rank-nullity theorem

Example

Let \(\mathbf{b} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \) and \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be the projection map \(\text{proj}_b \).

Verify the rank-nullity theorem in this case.

Solution
Nature of solutions to $Ax = b$

Our key lemma also gives

Theorem

The equation $Ax = b$ has:

1. no solution if $\text{rank}(A) \neq \text{rank}([A|b])$, and
2. at least one solution if $\text{rank}(A) = \text{rank}([A|b])$. Further,

 i) if $\text{nullity}(A) = 0$ the solution is unique, whereas,

 ii) if $\text{nullity}(A) = \nu > 0$, then the general solution is of the form

 $$x = x_p + \lambda_1 k_1 + \cdots + \lambda_\nu k_\nu \quad \text{for } \lambda_1, \ldots, \lambda_\nu \in \mathbb{R},$$

 where x_p is any solution of $Ax = b$, and where $\{k_1, \ldots, k_\nu\}$ is a basis for $\ker(A)$.
A theoretical application of rank-nullity theorem

Example

Prove that if $T : \mathbb{R}^n \to \mathbb{R}^n$ is linear, then the following are equivalent.

a) For all $b \in \mathbb{R}^n$, there is at least one solution to $Tx = b$.

b) For all $b \in \mathbb{R}^n$, there is at most one solution to $Tx = b$.

Solution
In what sense are second order linear differential equations linear?

They involve the linear map \(T : C^2[\mathbb{R}] \rightarrow C[\mathbb{R}] \), where \(C^2[\mathbb{R}] \) is the vector space of all \(\mathbb{R} \)-valued functions with continuous second derivatives and \(C[\mathbb{R}] \) is the vector space of all continuous \(\mathbb{R} \)-valued functions—

\[
T(y) = a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy,
\]

where \(a, b, c \in \mathbb{R} \).

In this case, \(\text{ker}(T) \) is the solution set of the ODE —

\[
a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = 0,
\]

where \(a, b, c \in \mathbb{R} \).

Hence the homogeneous solution is a vector space. Furthermore, it is of dimension 2 i.e. \(\text{nullity}(T) = 2 \). We can also apply similar ideas for the solution to \(Ax = b \) to get the solution to

\[
a \frac{d^2y}{dx^2} + b \frac{dy}{dx} + cy = f(x),
\]

where \(a, b, c \in \mathbb{R} \).
Example involving polynomials

To study boundary value problems, it’s useful to study linear maps such as the one below.

Example

The function \(T : \mathbb{P}_2 \rightarrow \mathbb{R}^2 \) is defined by \(Tp = \begin{pmatrix} p(1) \\ p'(1) \end{pmatrix} \)

a) Prove that \(T \) is linear.

b) Find \(\ker(T) \).

c) Use the rank-nullity theorem to find \(\text{im}(T) \).

Solution