Lecture 7: Subspaces. Linear combinations

Aim Lecture Intro subspaces which allow you to define linear subsets of a vect space.

Subspace axioms

Subspace **Thm-Defn** Let V be a vector space / field \mathbb{F} . A subset $W \subseteq V$ is a subspace of V if (all) the following closure axioms hold.

- a. W contains the zero vector.
- b. W is closed under addn
- i.e. for any $\mathbf{v}, \mathbf{w} \in W$ we have $\mathbf{v} + \mathbf{w} \in W$.
- & c. W is closed under scalar multn
- i.e. for any $\mathbf{w} \in W, \lambda \in \mathbb{F}$ we have $\lambda \mathbf{w} \in W$.

In this case, addn & scalar multn on V restrict to addn and scalar multn law on W making W a vector space.

We write $W \leq V$ in this case.

Why? Vector space axioms for $V \implies$ those for W. Try to check some axioms for yourself.

Counter-examples

e.g. 1 Subspaces aren't curved.

$$V = \mathbb{R}^2$$
, $W = \{(x, y)|x^2 + y^2 = 2x + 2y\}$.

W is not a subspace of V

Why? Note $(2,0) \in W$,

but $2(2,0) = (4,0) \notin W$.

 $\therefore W$ is not closed under scalar multn.

W fails one of the axioms of a subspace.

 $\therefore W$ is not a subspace.

Note: If $W \leq \mathbb{R}^n$ contains $\mathbf{w} \neq \mathbf{0}$, it contains the line $\mathbf{x} = \lambda \mathbf{w}, \lambda \in \mathbb{R}$.

e.g. $2 V = \mathbb{R}^2$, W = x and y axes is not a

subspace.

Why? $(1,0), (0,1) \in W$ but $(1,0) + (0,1) = (1,1) \notin W$

- $\therefore W$ is not closed under addn.
- $\therefore W$ is not a subspace.

Note W is closed under scalar multn.

 \mathbf{ex} Is \mathbb{Z} a subspace of \mathbb{R} ?

ex Is $\{(x,y)|x+2y=3\}$ a subspace of \mathbb{R}^2 ?

Examples

e.g. 3 Suppose $\mathbf{v} \in \mathbb{R}^3$ represents some portfolio

i.e.
$$\mathbf{v} = (v_1, v_2, v_3)$$
 where

 $v_i = \text{amount of investment in } i\text{-th asset.}$

Suppose r_i = rate of return of *i*-th asset.

so net profit is r_1v_1+

Show $W := \{ \mathbf{v} \in \mathbb{R}^3 \mid \text{net profit is } 0 \}$

is a subspace of \mathbb{R}^3 .

$$\mathbf{A} W = \{ \mathbf{v} \in \mathbb{R}^3 | \mathbf{r} \cdot \mathbf{v} = 0 \}$$

where $\mathbf{r} = (r_1, r_2, r_3)$.

N.B. Geom, W is a

Check closure axioms.

Zero: $\mathbf{r}.\mathbf{0} = 0 \text{ so } \mathbf{0} \in W.$

Addn: if $\mathbf{v}, \mathbf{w} \in W$ then

$$\mathbf{r}.(\mathbf{v}+\mathbf{w}) = \mathbf{r}.\mathbf{v}+\mathbf{r}.\mathbf{w} = 0+0=0$$

so $\mathbf{v} + \mathbf{w} \in W \& W$ is closed under addn.

Scalar Multn: if $\mathbf{v} \in W, \lambda \in \mathbb{R}$ then

$$\mathbf{r} \cdot (\lambda \mathbf{v}) = \lambda \mathbf{r} \cdot \mathbf{v} = \lambda 0 = 0$$

so $\lambda \mathbf{v} \in W \& W$ is closed under scalar multn.

Closure axioms hold so $W \leq \mathbb{R}^3$.

e.g. 4 $V = \mathcal{R}[\mathbb{R}]$ has subsets

 $\mathbb{P} = \text{set of real poly fns.}$

 \mathbb{P}_d = subset of poly of degree $\leq d$.

 \mathbb{P}, \mathbb{P}_d are subspaces of $\mathcal{R}[\mathbb{R}]$.

Why? 0 is a poly of degree $\leq d$ so $0 \in \mathbb{P}_d$.

 \mathbb{P}_d is closed under addn ::

 \mathbb{P}_d is closed under scalar mult since

This verifies closure axioms for a subspace so $\mathbb{P}_d \leq \mathcal{R}[\mathbb{R}]$

Argument above works for $d = \infty$ to show also $\mathbb{P} \leq \mathcal{R}[\mathbb{R}]$.

e.g. 5 Sim $\mathbb{P}(\mathbb{C})$ resp $\mathbb{P}_d(\mathbb{C})$ = set of complex poly (resp of degree $\leq d$) are subspaces of $\mathcal{C}(\mathbb{C})$.

Alternative Subspace Thm Let V = vect space / field \mathbb{F} . Then $W \subseteq V$ is a subspace iff i)

 $\mathbf{0} \in W$ and ii) for any $\mathbf{v}, \mathbf{w} \in W, \lambda \in \mathbb{F}$ we have $\lambda \mathbf{v} + \mathbf{w} \in W$.

Why? Condn ii) certainly follows from closure under addn & scalar multn. Conversely, condn ii) specialises to these two closure axioms on setting $\lambda = 1$ or $\mathbf{w} = \mathbf{0}$ (which is allowed by condn i)).

e.g. 6 Interval $I = [a, b] \subseteq \mathbb{R}, V = \mathcal{R}[I]$.

Let C(I) = set of continuous fns.

 $C^{(k)}(I) = \text{set of } k\text{-times differentiable fns s.t. } f^{(k)}(x)$ is also continuous.

Then $C(I), C^{(k)}(I)$ are subspaces.

- e.g. We check C(I) is a subspace using the alternative subspace thm.
 - i) 0 fn is continuous so $0 \in C(I)$.
- ii) Let $\lambda \in \mathbb{R}, f, g \in C(I)$. Then $\lambda f + g$ is cont so $\lambda f + g \in C(I)$.

The alternative subspace thm then shows C(I) is a subspace of $\mathcal{R}[I]$.

Above subspaces are useful in calculus.

Facts about subspaces

Fact Let V be vector space / field \mathbb{F} .

- 1) $\mathbf{0}$ and V are subspaces of V.
- 2) If $W \leq V, U \leq W$ then $U \leq W$.
- 3) The zero of V is the zero of any subspace.

Proof: easy. Clear from any example

$$0 < \mathbb{P}_d < \mathbb{P} < C(\mathbb{R}).$$

Linear Combinations

Defn Let $S = \{\mathbf{v}_1, \dots, \mathbf{v}_n\} \subseteq V = \text{vect space}$ / field \mathbb{F} . A linear combination of S is a vector or expression of form

$$\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 + \ldots + \lambda_n \mathbf{v}_n$$

for some scalars $\lambda_1, \ldots, \lambda_n \in \mathbb{F}$.

If $S = \emptyset$, then we define by default that **0** is the only linear combon of S.

e.g. 7
$$\mathbf{v}_1 = (2, 1), \mathbf{v}_2 = (0, 1)$$

Write (4,3) as a lin

combin of $\{\mathbf{v}_1, \mathbf{v}_2\}$.

$$(4,3) = 2(2,1) + 1(0,1)$$

$$= 2(2,1) + (0,1).$$

Hence (4,3) is a lin combin of $\mathbf{v}_1, \mathbf{v}_2$.

e.g. 8 $V = M_{22}(\mathbb{R})$

$$\mathbf{v}_1 = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 2 & 3 \\ 0 & 4 \end{pmatrix}, \mathbf{w} = \begin{pmatrix} 3 & 5 \\ 1 & 4 \end{pmatrix}$$

 \mathbf{w} is not a lin combin of $\mathbf{v}_1, \mathbf{v}_2$.

Why? For $\lambda_1, \lambda_2 \in \mathbb{R}$,

$$\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 =$$

e.g. 9 Is e^{3x} a lin combin of e^x , e^{2x} ?

A No. For suppose to the contrary that $e^{3x} = \lambda e^x + \mu e^{2x}$ for some $\lambda, \mu \in \mathbb{R}$.

$$1 = 1$$

Take limit

RHS

Thus e^{3x} is not a lin combin of e^x , e^x .

Prop If $S = \{\mathbf{v}_1, \dots, \mathbf{v}_r\} \subseteq W \leq V = \text{vector}$ space / field \mathbb{F} , then every lin combin of elements in S is in W.

Proof: For $\lambda_1, \ldots, \lambda_r \in \mathbb{F}$ we have

$$\lambda_1 \mathbf{v}_1 + \ldots + \lambda_r \mathbf{v}_r$$