A non-commutative Mori contraction

Daniel Chan reporting on joint work with Adam Nyman

University of New South Wales

October 2008

Daniel Chan reporting on joint work with Adam Nyman

Fact Let *Y* be a comm smooth proj surface and $C \subset Y$ an extremal *K*-negative curve with $C^2 = 0$,

Fact Let Y be a comm smooth proj surface and $C \subset Y$ an extremal K-negative curve with $C^2 = 0$, then there's a morphism $f : Y \longrightarrow X$ to a smooth proj curve X, contracting C, exhibiting Y as a ruled surface.

Fact Let Y be a comm smooth proj surface and $C \subset Y$ an extremal K-negative curve with $C^2 = 0$, then there's a morphism $f : Y \longrightarrow X$ to a smooth proj curve X, contracting C, exhibiting Y as a ruled surface.

This is an example of a Mori contraction.

Fact Let *Y* be a comm smooth proj surface and $C \subset Y$ an extremal *K*-negative curve with $C^2 = 0$, then there's a morphism $f : Y \longrightarrow X$ to a smooth proj curve *X*, contracting *C*, exhibiting *Y* as a ruled surface.

This is an example of a Mori contraction.

Motivating question for talk	
Is there a nc version of this?	

Fact Let *Y* be a comm smooth proj surface and $C \subset Y$ an extremal *K*-negative curve with $C^2 = 0$, then there's a morphism $f : Y \longrightarrow X$ to a smooth proj curve *X*, contracting *C*, exhibiting *Y* as a ruled surface.

This is an example of a Mori contraction.

Motivating question for talk

Is there a nc version of this?

Need first define nc smooth proj surface etc.

Throughout work/ fixed alg closed field k of char 0. Let A = conn. graded k-algebra, fin gen in deg 1

Throughout work/ fixed alg closed field k of char 0. Let A = conn. graded k-algebra, fin gen in deg 1

Define Proj $A := \operatorname{Gr} A/\operatorname{tors}$

Throughout work/ fixed alg closed field k of char 0. Let A = conn. graded k-algebra, fin gen in deg 1

Define Proj $A := \operatorname{Gr} A/\operatorname{tors}$

where Gr A = category of graded A-modules

Throughout work/ fixed alg closed field k of char 0. Let A = conn. graded k-algebra, fin gen in deg 1

Define Proj $A := \operatorname{Gr} A/\operatorname{tors}$

where Gr A = category of graded A-modules

tors = Serre sub-category of $A_{>0}$ -torsion modules M

Throughout work/ fixed alg closed field k of char 0. Let A = conn. graded k-algebra, fin gen in deg 1

Define Proj $A := \operatorname{Gr} A/\operatorname{tors}$

where Gr A = category of graded A-modules

tors = Serre sub-category of $A_{>0}$ -torsion modules M

i.e. each element of M annihilated by some power of $A_{>0}$.

Throughout work/ fixed alg closed field k of char 0. Let A = conn. graded k-algebra, fin gen in deg 1

Define Proj $A := \operatorname{Gr} A/\operatorname{tors}$

where Gr A = category of graded A-modules

tors = Serre sub-category of $A_{>0}$ -torsion modules M

i.e. each element of M annihilated by some power of $A_{>0}$. Why?

Throughout work/ fixed alg closed field k of char 0. Let A = conn. graded k-algebra, fin gen in deg 1

Define Proj $A := \operatorname{Gr} A/\operatorname{tors}$

where Gr A = category of graded A-modules

tors = Serre sub-category of $A_{>0}$ -torsion modules M

i.e. each element of M annihilated by some power of $A_{>0}$.

Why? (Serre) If *A* is homogeneous coord ring of proj scheme *Y* then

Throughout work/ fixed alg closed field k of char 0. Let A = conn. graded k-algebra, fin gen in deg 1

Define Proj $A := \operatorname{Gr} A/\operatorname{tors}$

where Gr A = category of graded A-modules

tors = Serre sub-category of $A_{>0}$ -torsion modules M

i.e. each element of M annihilated by some power of $A_{>0}$.

Why? (Serre) If *A* is homogeneous coord ring of proj scheme *Y* then

Proj $A \simeq$ category of quasi-coherent sheaves on Y

Additional hypotheses on A

Y = Proj A is a *nc smooth proj d-fold* if further

Daniel Chan reporting on joint work with Adam Nyman

Additional hypotheses on A

- Y =Proj A is a *nc smooth proj d-fold* if further
 - A is a domain.

- Y = Proj A is a *nc smooth proj d-fold* if further
 - A is a domain.
 - **2** A is strongly noetherian i.e. $A \otimes_k R$ noeth for any comm noeth k-algebra R.

- Y = Proj A is a *nc smooth proj d-fold* if further
 - A is a domain.
 - ② A is strongly noetherian i.e. A ⊗_k R noeth for any comm noeth k-algebra R.
 - (Gorenstein) there
 - is an Auslander balanced dualising complex &

- Y = Proj A is a *nc smooth proj d-fold* if further
 - A is a domain.
 - ② A is strongly noetherian i.e. A ⊗_k R noeth for any comm noeth k-algebra R.
 - (Gorenstein) there are A-bimodules ω_Y, ω_Y^{-1} s.t. $\omega_Y[d+1]$ is an Auslander balanced dualising complex &

- Y = Proj A is a *nc smooth proj d-fold* if further
 - A is a domain.
 - ② A is strongly noetherian i.e. A ⊗_k R noeth for any comm noeth k-algebra R.
 - (Gorenstein) there are A-bimodules ω_Y, ω_Y⁻¹ s.t.
 ω_Y[d + 1] is an Auslander balanced dualising complex & ⊗_A ω_Y, ⊗_A ω_Y⁻¹ induce inverse auto-equivalences on Proj A.

- Y = Proj A is a *nc smooth proj d-fold* if further
 - A is a domain.
 - ② A is strongly noetherian i.e. A ⊗_k R noeth for any comm noeth k-algebra R.
 - (Gorenstein) there are A-bimodules ω_Y, ω_Y⁻¹ s.t.
 ω_Y[d + 1] is an Auslander balanced dualising complex & ⊗_A ω_Y, ⊗_A ω_Y⁻¹ induce inverse auto-equivalences on Proj A.
 - (Smooth) $\operatorname{Ext}_Y^{d+1}(-,-) = 0$. N.B. Mod Y has enough injectives.

Examples of nc smooth projective *d*-folds

• Skl_n, the *n*-dimensional Sklyanin algebra

Examples of nc smooth projective *d*-folds

- Skl_n, the n-dimensional Sklyanin algebra
- Skl₄/(z) for generic z ∈ Z(Skl₄)₂ nc quadric of Smith-Van den Bergh

Examples of nc smooth projective *d*-folds

- Skl_n, the n-dimensional Sklyanin algebra
- Skl₄/(z) for generic z ∈ Z(Skl₄)₂ nc quadric of Smith-Van den Bergh

Strongly noeth, Gorenstein hypotheses hold for A iff they hold for A/(z) where z is homogeneous normal element of deg > 0.

Geometric techniques available (given hypotheses)

Let Y = nc smooth proj surface

Daniel Chan reporting on joint work with Adam Nyman

Geometric techniques available (given hypotheses)

Let Y = nc smooth proj surface

Mod Y = category Y, mod Y = full subcat of noeth objects

Daniel Chan reporting on joint work with Adam Nyman

Geometric techniques available (given hypotheses)

Let Y = nc smooth proj surface

Mod Y = category Y, mod Y = full subcat of noeth objects

Have following geometric concepts for Y

Cohomology

Mod Y = category Y, mod Y = full subcat of noeth objects

- Cohomology
- **2** dimension function dim $M, M \in \text{mod } Y$

Mod Y = category Y, mod Y = full subcat of noeth objects

- Cohomology
- **2** dimension function dim $M, M \in \text{mod } Y$
- Hilbert schemes

Mod Y = category Y, mod Y = full subcat of noeth objects

- Cohomology
- **2** dimension function dim $M, M \in \text{mod } Y$
- Hilbert schemes
- Bondal-Kapranov-Serre duality

Mod Y = category Y, mod Y = full subcat of noeth objects

- Cohomology
- **2** dimension function dim $M, M \in \text{mod } Y$
- Hilbert schemes
- Bondal-Kapranov-Serre duality
- Intersection theory

Mod Y = category Y, mod Y = full subcat of noeth objects

Have following geometric concepts for Y

- Cohomology
- **2** dimension function dim $M, M \in \text{mod } Y$
- Hilbert schemes
- Bondal-Kapranov-Serre duality
- Intersection theory

BUT not linear systems (yet??)

Let $Y = \operatorname{Proj} A = \operatorname{nc} \operatorname{smooth} \operatorname{proj} d$ -fold

Daniel Chan reporting on joint work with Adam Nyman

Let $Y = \operatorname{Proj} A = \operatorname{nc} \operatorname{smooth} \operatorname{proj} d$ -fold

$$A =: \mathcal{O}_{\mathsf{Y}} \in \mathsf{mod}\; \mathsf{Y}$$

Let $Y = \operatorname{Proj} A = \operatorname{nc} \operatorname{smooth} \operatorname{proj} d$ -fold

 $A =: \mathcal{O}_{\mathsf{Y}} \in \mathsf{mod}\; Y$

For $M \in Mod Y$,

 $H^{i}(M) := \operatorname{Ext}_{Y}^{i}(\mathcal{O}_{Y}, M)$

Daniel Chan reporting on joint work with Adam Nyman

Dimension of sheaves

Let $Y = \operatorname{Proj} A = \operatorname{nc} \operatorname{smooth} \operatorname{proj} d$ -fold

Daniel Chan reporting on joint work with Adam Nyman

< ∃ >
Dimension of sheaves

Let $Y = \operatorname{Proj} A = \operatorname{nc} \operatorname{smooth} \operatorname{proj} d$ -fold noeth $M \in \operatorname{Gr} A$

 $\lim_{n} \operatorname{Ext}_{A}^{i}(A/A_{>n}, M)$

Canonical dimension of noeth $M \in \operatorname{Gr} A$ is

$$c.\dim M := \max\{i|\lim_n \operatorname{Ext}^i_A(A/A_{>n}, M) \neq 0\}$$

Canonical dimension of noeth $M \in \operatorname{Gr} A$ is

$$c.\dim M := \max\{i | \lim_{n} \operatorname{Ext}^{i}_{\mathcal{A}}(\mathcal{A}/\mathcal{A}_{>n}, M) \neq 0\}$$

If
$$0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$$
 exact

Canonical dimension of noeth $M \in \operatorname{Gr} A$ is

$$c.\dim M := \max\{i | \lim_{n} \operatorname{Ext}^{i}_{\mathcal{A}}(\mathcal{A}/\mathcal{A}_{>n}, M) \neq 0\}$$

If $0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$ exact then $c. \dim M = \max\{c. \dim M', c. \dim M''\}$ (by Yekutieli-Zhang)

Canonical dimension of noeth $M \in \operatorname{Gr} A$ is

$$c.\dim M := \max\{i | \lim_{n} \operatorname{Ext}^{i}_{\mathcal{A}}(\mathcal{A}/\mathcal{A}_{>n}, M) \neq 0\}$$

If
$$0 \longrightarrow M' \longrightarrow M \longrightarrow M'' \longrightarrow 0$$
 exact
then $c. \dim M = \max\{c. \dim M', c. \dim M''\}$
(by Yekutieli-Zhang)

On Y,

$$\dim = c.\dim -1$$

Let $Y = \operatorname{Proj} A = \operatorname{nc} \operatorname{smooth} \operatorname{proj} d$ -fold

Daniel Chan reporting on joint work with Adam Nyman

Let $Y = \operatorname{Proj} A = \operatorname{nc} \operatorname{smooth} \operatorname{proj} d$ -fold

For comm k-algebra R can define

$$\mathsf{Mod}\ Y_R = \mathsf{Proj}\ A_R = \mathsf{Gr}(A \otimes_k R) / \mathsf{tors}$$

Let $Y = \operatorname{Proj} A = \operatorname{nc} \operatorname{smooth} \operatorname{proj} d$ -fold

For comm k-algebra R can define

Mod
$$Y_R$$
 = Proj A_R = Gr $(A \otimes_k R)$ /tors

For $\mathcal{M} \in \mathsf{Mod}\ Y_R$ can define $\mathcal{M} \otimes_R - : \mathsf{Mod}\ R \longrightarrow \mathsf{Mod}\ Y$

Let $Y = \operatorname{Proj} A = \operatorname{nc} \operatorname{smooth} \operatorname{proj} d$ -fold

For comm k-algebra R can define

Mod
$$Y_R$$
 = Proj A_R = Gr $(A \otimes_k R)$ /tors

For $\mathcal{M} \in \text{Mod } Y_R$ can define $\mathcal{M} \otimes_R - : \text{Mod } R \longrightarrow \text{Mod } Y$ & thus flatness /R.

Let $Y = \operatorname{Proj} A = \operatorname{nc} \operatorname{smooth} \operatorname{proj} d$ -fold

For comm k-algebra R can define

Mod
$$Y_R$$
 = Proj A_R = Gr $(A \otimes_k R)$ /tors

For $\mathcal{M} \in \text{Mod } Y_R$ can define $\mathcal{M} \otimes_R - : \text{Mod } R \longrightarrow \text{Mod } Y$ & thus flatness /R.

Theorem (loosely stated Artin-Zhang 2001)

For $P \in mod Y$, there exists a Hilbert scheme Hilb P parametrising quotients of P.

For comm k-algebra R can define

Mod
$$Y_R$$
 = Proj A_R = Gr $(A \otimes_k R)$ /tors

For $\mathcal{M} \in \text{Mod } Y_R$ can define $\mathcal{M} \otimes_R - : \text{Mod } R \longrightarrow \text{Mod } Y$ & thus flatness /R.

Theorem (loosely stated Artin-Zhang 2001)

For $P \in mod Y$, there exists a Hilbert scheme Hilb P parametrising quotients of P. Hilb P is a countable union of projective schemes which is locally of finite type.

There are isomorphisms

There are isomorphisms

$$\operatorname{Ext}^{i}_{Y}(M,N) \simeq \operatorname{Ext}^{d-i}_{Y}(N,M\otimes\omega_{Y})^{*}$$

natural in $M, N \in \mod Y$.

There are isomorphisms

$$\operatorname{Ext}^{i}_{Y}(M,N) \simeq \operatorname{Ext}^{d-i}_{Y}(N,M\otimes\omega_{Y})^{*}$$

natural in $M, N \in \mod Y$.

Note: $M = O_Y$ is usual Serre duality.

Intersection theory (I.Mori-Smith)

Let $Y = \operatorname{Proj} A = \operatorname{nc} \operatorname{smooth} \operatorname{proj} \operatorname{surface}$

Intersection theory (I.Mori-Smith)

Let $Y = \operatorname{Proj} A = \operatorname{nc} \operatorname{smooth} \operatorname{proj} \operatorname{surface}$

For $M, N \in \text{mod } Y$, have well-defined

$$M.N := -\sum_{i=0}^{2} (-1)^{i} \operatorname{dim} \operatorname{Ext}_{Y}^{i}(M,N)$$

Let $Y = \operatorname{Proj} A = \operatorname{nc} \operatorname{smooth} \operatorname{proj} \operatorname{surface}$

For $M, N \in \text{mod } Y$, have well-defined

$$M.N := -\sum_{i=0}^{2} (-1)^{i} \operatorname{dim} \operatorname{Ext}_{Y}^{i}(M,N)$$

Why? If Y is comm, &

Let $Y = \operatorname{Proj} A = \operatorname{nc} \operatorname{smooth} \operatorname{proj} \operatorname{surface}$

For $M, N \in \text{mod } Y$, have well-defined

$$M.N := -\sum_{i=0}^{2} (-1)^{i} \operatorname{dim} \operatorname{Ext}_{Y}^{i}(M,N)$$

Why? If Y is comm, & $C, D \subset Y$ are curves

Daniel Chan reporting on joint work with Adam Nyman

Let $Y = \operatorname{Proj} A = \operatorname{nc} \operatorname{smooth} \operatorname{proj} \operatorname{surface}$

For $M, N \in \text{mod } Y$, have well-defined

$$M.N := -\sum_{i=0}^{2} (-1)^{i} \operatorname{dim} \operatorname{Ext}^{i}_{Y}(M,N)$$

Why? If Y is comm, & $C, D \subset Y$ are curves then $\mathcal{O}_C \cdot \mathcal{O}_D = C \cdot D$

Daniel Chan reporting on joint work with Adam Nyman

• Find methods for constructing morphisms $f : Y \longrightarrow X$ between nc proj schemes i.e.

.≣ →

Find methods for constructing morphisms f : Y → X between nc proj schemes i.e. adjoint functors
 f* : Mod X → Mod Y, f*: Mod Y → Mod X.

- Find methods for constructing morphisms f : Y → X between nc proj schemes i.e. adjoint functors
 f* : Mod X → Mod Y, f* : Mod Y → Mod X.
- Suppose Y = nc smooth proj surface with object like a K-negative curve with self-intersection 0.

- Find methods for constructing morphisms f : Y → X between nc proj schemes i.e. adjoint functors
 f* : Mod X → Mod Y, f* : Mod Y → Mod X.
- Suppose Y = nc smooth proj surface with object like a K-negative curve with self-intersection 0. Can we use 1) to construct a "nc Mori contraction" f : Y → X with X a smooth curve.

- Find methods for constructing morphisms f : Y → X between nc proj schemes i.e. adjoint functors
 f* : Mod X → Mod Y, f* : Mod Y → Mod X.
- Suppose Y = nc smooth proj surface with object like a K-negative curve with self-intersection 0. Can we use 1) to construct a "nc Mori contraction" f : Y → X with X a smooth curve.
- How much does such a nc Mori contraction behave like a commutative fibration?

K-negative rational curves with self-intersection 0

Let Y = nc smooth proj surface

Daniel Chan reporting on joint work with Adam Nyman

Say $M \in \text{mod } Y$ is a *K*-negative rational curve with self-intersection 0 if

Say $M \in \text{mod } Y$ is a *K*-negative rational curve with self-intersection 0 if

• *M* is a 1-critical quotient of \mathcal{O}_{Y}

Say $M \in \text{mod } Y$ is a *K*-negative rational curve with self-intersection 0 if

• *M* is a 1-critical quotient of \mathcal{O}_{Y}

$$h^0(M) = 1, \ h^1(M) = 0, \ M^2 = 0$$

Say $M \in \text{mod } Y$ is a *K*-negative rational curve with self-intersection 0 if

- *M* is a 1-critical quotient of \mathcal{O}_{Y}
- **2** $h^0(M) = 1, h^1(M) = 0, M^2 = 0$
- $I H^0(M \otimes \omega_Y) = 0$

Say $M \in \text{mod } Y$ is a *K*-negative rational curve with self-intersection 0 if

• *M* is a 1-critical quotient of \mathcal{O}_{Y}

2 $h^0(M) = 1, h^1(M) = 0, M^2 = 0$

$$I H^0(M \otimes \omega_Y) = 0$$

N.B. If Y comm, $K.C < 0 \Longrightarrow H^0(\mathcal{O}_C \otimes \omega) = 0.$

Say $M \in \text{mod } Y$ is a *K*-negative rational curve with self-intersection 0 if

• *M* is a 1-critical quotient of \mathcal{O}_{Y}

- **2** $h^0(M) = 1, h^1(M) = 0, M^2 = 0$
- $I = H^0(M \otimes \omega_Y) = 0$

N.B. If Y comm, $K.C < 0 \Longrightarrow H^0(\mathcal{O}_C \otimes \omega) = 0$. Don't know if this is true nc.

Hilbert scheme of K-neg rat curve M with $M^2 = 0$

Let Y = nc smooth proj surface,

Daniel Chan reporting on joint work with Adam Nyman

Hilbert scheme of K-neg rat curve M with $M^2 = 0$

Let Y = nc smooth proj surface,

M = K-neg rat curve with $M^2 = 0$

M = K-neg rat curve with $M^2 = 0$

Theorem (C-Nyman)

The point of Hilb \mathcal{O}_Y corresponding to M is smooth and has 1-dim tangent space i.e.

M = K-neg rat curve with $M^2 = 0$

Theorem (C-Nyman)

The point of Hilb \mathcal{O}_Y corresponding to M is smooth and has 1-dim tangent space i.e. there's a projective curve X, smooth point $p \in X$ & flat family \mathcal{M} / X of objects in mod Y with $\mathcal{M} \otimes_X k(p) = M$.

Let Y =nc smooth proj d-fold

Daniel Chan reporting on joint work with Adam Nyman
Morphisms to curves

Let Y = nc smooth proj d-fold

X = (integral) proj curve

Daniel Chan reporting on joint work with Adam Nyman

Morphisms to curves

Let Y = nc smooth proj d-fold

X = (integral) proj curve

 $\mathcal{M}/X =$ flat family of objects in mod Y

X = (integral) proj curve

 $\mathcal{M}/X = \mathsf{flat}$ family of objects in mod Y

Wish to define exact $f^* : Mod X \longrightarrow Mod Y$ via "Fourier-Mukai transform"

X = (integral) proj curve

 $\mathcal{M}/X = \mathsf{flat}$ family of objects in mod Y

Wish to define exact $f^* : Mod X \longrightarrow Mod Y$ via "Fourier-Mukai transform"

$$\mathcal{L} \in \mathsf{mod}\, X \rightsquigarrow \mathcal{M} \otimes_X \mathcal{L} \in \mathsf{mod}\, Y_X$$

X = (integral) proj curve

 $\mathcal{M}/X =$ flat family of objects in mod Y

Wish to define exact $f^* : Mod X \longrightarrow Mod Y$ via "Fourier-Mukai transform"

 $\mathcal{L} \in \operatorname{mod} X \rightsquigarrow \mathcal{M} \otimes_X \mathcal{L} \in \operatorname{mod} Y_X$ Want $f^*(\mathcal{L}) := \pi_*(\mathcal{M} \otimes_X \mathcal{L})$

X = (integral) proj curve

 $\mathcal{M}/X =$ flat family of objects in mod Y

Wish to define exact f^* : Mod $X \longrightarrow Mod Y$ via "Fourier-Mukai transform"

 $\mathcal{L} \in \operatorname{mod} X \rightsquigarrow \mathcal{M} \otimes_X \mathcal{L} \in \operatorname{mod} Y_X$ Want $f^*(\mathcal{L}) := \pi_*(\mathcal{M} \otimes_X \mathcal{L})$ for appropriate $\pi_* : \operatorname{Mod} Y_X \longrightarrow \operatorname{Mod} Y$

Define π_* via relative Cech cohomology as usual i.e.

- < E > < E >

Define π_* via relative Cech cohomology as usual i.e.

For $\mathcal{N} \in \text{Mod } Y_X$ & open affine cover $X = U \cup V$,

Define π_* via relative Cech cohomology as usual i.e. For $\mathcal{N} \in \operatorname{Mod} Y_X$ & open affine cover $X = U \cup V$,

restriction maps give morphism in Mod Y

Define π_* via relative Cech cohomology as usual i.e. For $\mathcal{N} \in \text{Mod } Y_X$ & open affine cover $X = U \cup V$, restriction maps give morphism in Mod Y

$$\mathcal{N}(U) \oplus \mathcal{N}(V) \xrightarrow{d} \mathcal{N}(U \cap V)$$

Define π_* via relative Cech cohomology as usual i.e. For $\mathcal{N} \in \text{Mod } Y_X$ & open affine cover $X = U \cup V$, restriction maps give morphism in Mod Y

$$\mathcal{N}(U)\oplus\mathcal{N}(V) \stackrel{d}{\longrightarrow} \mathcal{N}(U\cap V)$$

Define

$$\pi_*(\mathcal{N}) = \mathsf{ker} \, d$$

Define π_* via relative Cech cohomology as usual i.e. For $\mathcal{N} \in \text{Mod } Y_X$ & open affine cover $X = U \cup V$, restriction maps give morphism in Mod Y

$$\mathcal{N}(U)\oplus \mathcal{N}(V) \stackrel{d}{\longrightarrow} \mathcal{N}(U\cap V)$$

Define

$$\pi_*(\mathcal{N}) = \ker d$$

N.B.

• π_* independent of choice of open affine cover

Define π_* via relative Cech cohomology as usual i.e. For $\mathcal{N} \in \text{Mod } Y_X$ & open affine cover $X = U \cup V$, restriction maps give morphism in Mod Y

$$\mathcal{N}(U)\oplus \mathcal{N}(V) \stackrel{d}{\longrightarrow} \mathcal{N}(U\cap V)$$

Define

$$\pi_*(\mathcal{N}) = \mathsf{ker} \, d$$

N.B.

Define π_* via relative Cech cohomology as usual i.e. For $\mathcal{N} \in \text{Mod } Y_X$ & open affine cover $X = U \cup V$, restriction maps give morphism in Mod Y

$$\mathcal{N}(U)\oplus \mathcal{N}(V) \stackrel{d}{\longrightarrow} \mathcal{N}(U\cap V)$$

Define

$$\pi_*(\mathcal{N}) = \mathsf{ker} \, d$$

N.B.

π_{*} independent of choice of open affine cover
f^{*} = π_{*}(M ⊗_X-) is left exact
Q Is f^{*} right exact too?

Base point freedom

Defn Say \mathcal{M} is *base point free* if for any simple $P \in \text{mod } Y$,

Base point freedom

Defn Say \mathcal{M} is *base point free* if for any simple $P \in \text{mod } Y$, Hom_Y(M, P) = 0 for a generic fibre $M \in \mathcal{M}$.

Theorem (C-Nyman)

If \mathcal{M}/X is base point free then

Theorem (C-Nyman)

If \mathcal{M} / X is base point free then

• $f^* = \pi_*(\mathcal{M} \otimes_X -)$ is exact so has a right adjoint.

Theorem (C-Nyman)

If \mathcal{M}/X is base point free then

- $f^* = \pi_*(\mathcal{M} \otimes_X -)$ is exact so has a right adjoint.
- *f*^{*} preserves noeth objects.

Theorem (C-Nyman)

If \mathcal{M}/X is base point free then

•
$$f^* = \pi_*(\mathcal{M} \otimes_X -)$$
 is exact so has a right adjoint.

• *f*^{*} preserves noeth objects.

Stupid Eg Let $i : X \longrightarrow Y$ be an embedding of proj curve in a comm smooth proj surface,

Theorem (C-Nyman)

If \mathcal{M}/X is base point free then

•
$$f^* = \pi_*(\mathcal{M} \otimes_X -)$$
 is exact so has a right adjoint.

• *f*^{*} preserves noeth objects.

Stupid Eg Let $i : X \longrightarrow Y$ be an embedding of proj curve in a comm smooth proj surface,

$$\mathcal{M}/X = \mathcal{O}_{\mathsf{X}} = \mathcal{O}_{\mathsf{\Gamma}_i}$$

Theorem (C-Nyman)

If \mathcal{M}/X is base point free then

•
$$f^* = \pi_*(\mathcal{M} \otimes_X -)$$
 is exact so has a right adjoint.

• *f*^{*} preserves noeth objects.

Stupid Eg Let $i: X \longrightarrow Y$ be an embedding of proj curve in a comm smooth proj surface,

$$\mathcal{M} \, / X = \mathcal{O}_{\mathsf{X}} = \mathcal{O}_{\mathsf{F}_i}$$

Then $f: Y \longrightarrow X$ has $f^* = i_*, f_* = i^!, f^* \mathcal{O}_X = \mathcal{O}_X$.

Let Y = nc smooth proj surface.

Daniel Chan reporting on joint work with Adam Nyman

.⊒ ▶ ∢

Let Y = nc smooth proj surface. M = K-neg rat curve with $M^2 = 0$

Daniel Chan reporting on joint work with Adam Nyman

Let Y = nc smooth proj surface. M = K-neg rat curve with $M^2 = 0$ \mathcal{M} / X comp of Hilb \mathcal{O}_Y containing M.

Let Y = nc smooth proj surface. M = K-neg rat curve with $M^2 = 0$ \mathcal{M} / X comp of Hilb \mathcal{O}_Y containing M.

Theorem (MAIN, C-Nyman)

If for every simple 0-dim quotient $P \in mod Y$ of M we have M.P = 0,

Let Y = nc smooth proj surface. M = K-neg rat curve with $M^2 = 0$ \mathcal{M} / X comp of Hilb \mathcal{O}_Y containing M.

Theorem (MAIN, C-Nyman)

If for every simple 0-dim quotient $P \in mod Y$ of M we have M.P = 0, then \mathcal{M} is base point free.

Let Y = nc smooth proj surface. M = K-neg rat curve with $M^2 = 0$ \mathcal{M} / X comp of Hilb \mathcal{O}_Y containing M.

Theorem (MAIN, C-Nyman)

If for every simple 0-dim quotient $P \in mod Y$ of M we have M.P = 0, then \mathcal{M} is base point free. Say induced map $f : Y \longrightarrow X$ is a nc Mori contraction.

Rem

Let Y = nc smooth proj surface. M = K-neg rat curve with $M^2 = 0$ \mathcal{M} / X comp of Hilb \mathcal{O}_Y containing M.

Theorem (MAIN, C-Nyman)

If for every simple 0-dim quotient $P \in mod Y$ of M we have M.P = 0, then \mathcal{M} is base point free. Say induced map $f : Y \longrightarrow X$ is a nc Mori contraction.

Rem

• Thm still holds with X replaced with finite cover.

Let Y = nc smooth proj surface. M = K-neg rat curve with $M^2 = 0$ \mathcal{M} / X comp of Hilb \mathcal{O}_Y containing M.

Theorem (MAIN, C-Nyman)

If for every simple 0-dim quotient $P \in mod Y$ of M we have M.P = 0, then \mathcal{M} is base point free. Say induced map $f : Y \longrightarrow X$ is a nc Mori contraction.

Rem

- Thm still holds with X replaced with finite cover.
- (Smith) ∃ weird eg of nc quadrics with a point lying on all lines of a ruling.

Let Y = nc smooth proj surface. M = K-neg rat curve with $M^2 = 0$ \mathcal{M} / X comp of Hilb \mathcal{O}_Y containing M.

Theorem (MAIN, C-Nyman)

If for every simple 0-dim quotient $P \in mod Y$ of M we have M.P = 0, then \mathcal{M} is base point free. Say induced map $f : Y \longrightarrow X$ is a nc Mori contraction.

Rem

- Thm still holds with X replaced with finite cover.
- (Smith) ∃ weird eg of nc quadrics with a point lying on all lines of a ruling.
- Recovers fibration $f: Y \longrightarrow X$ of nc ruled surface if \mathcal{M}/X is family of ruling lines.

For a morphism of comm noeth integral schemes $f: Y \longrightarrow X$

- < ∃ →

For a morphism of comm noeth integral schemes $f: Y \longrightarrow X$

- < ∃ →

•
$$f^* \mathcal{O}_X = \mathcal{O}_Y$$

For a morphism of comm noeth integral schemes $f: Y \longrightarrow X$

- $f^* \mathcal{O}_X = \mathcal{O}_Y$
- *f*_{*} O_Y = O_X if *f* projective with connected fibres & X normal.

For a morphism of comm noeth integral schemes $f: Y \longrightarrow X$

- $f^* \mathcal{O}_X = \mathcal{O}_Y$
- *f*_{*} O_Y = O_X if *f* projective with connected fibres & X normal.
- $R^i f_* \mathcal{O}_Y = 0$ for i > 0 if f is a ruled surface.

For a morphism of comm noeth integral schemes $f: Y \longrightarrow X$

- $f^* \mathcal{O}_X = \mathcal{O}_Y$
- f_{*} O_Y = O_X if f projective with connected fibres & X normal.
- $R^i f_* \mathcal{O}_Y = 0$ for i > 0 if f is a ruled surface.

Question

Do these hold for a nc Mori contraction?
New Questions

For a morphism of comm noeth integral schemes $f: Y \longrightarrow X$

- $f^* \mathcal{O}_X = \mathcal{O}_Y$
- f_{*} O_Y = O_X if f projective with connected fibres & X normal.
- $R^i f_* \mathcal{O}_Y = 0$ for i > 0 if f is a ruled surface.

Question

Do these hold for a nc Mori contraction?

Key Tool to answer question is f flat \implies Leray spectral seq holds

New Questions

For a morphism of comm noeth integral schemes $f: Y \longrightarrow X$

- $f^* \mathcal{O}_X = \mathcal{O}_Y$
- f_{*} O_Y = O_X if f projective with connected fibres & X normal.
- $R^i f_* \mathcal{O}_Y = 0$ for i > 0 if f is a ruled surface.

Question

Do these hold for a nc Mori contraction?

Key Tool to answer question is f flat \implies Leray spectral seq holds

$$\operatorname{Ext}_X^i(M, R^j f_*N) \Longrightarrow \operatorname{Ext}_Y^{i+j}(f^*M, N)$$

Cohomology results

Let $f: Y \longrightarrow X$ be a nc Mori contraction as in main thm.

伺 ト く ヨ ト く ヨ ト

э

→ = →

$$h^0(M) = 1, \ h^0(M \otimes \omega_Y) = 0.$$

→ = →

$$h^0(M) = 1, \ h^0(M \otimes \omega_Y) = 0.$$

$$h^0(M) = 1, \ h^0(M \otimes \omega_Y) = 0.$$

In this case, X is smooth & **Facts**

• $R^i f_*$ preserves noeth objects for all *i*.

$$h^0(M) = 1, \ h^0(M \otimes \omega_Y) = 0.$$

- $R^i f_*$ preserves noeth objects for all *i*.
- $R^i f_* = 0$ for i > 1 & $R^1 f_* \mathcal{O}_Y = 0$.

$$h^0(M) = 1, \ h^0(M \otimes \omega_Y) = 0.$$

- $R^i f_*$ preserves noeth objects for all *i*.
- $R^i f_* = 0$ for i > 1 & $R^1 f_* \mathcal{O}_Y = 0$.
- As M ∈ M varies, r = h¹(M ⊗ ω_Y) is constant & f_{*} O_Y is loc free of rank r.

$$h^0(M) = 1, \ h^0(M \otimes \omega_Y) = 0.$$

- $R^i f_*$ preserves noeth objects for all *i*.
- $R^i f_* = 0$ for i > 1 & $R^1 f_* \mathcal{O}_Y = 0$.
- As M ∈ M varies, r = h¹(M ⊗ ω_Y) is constant & f_{*} O_Y is loc free of rank r.
- $f_*f^*\mathcal{O}_X$ loc free of rank 1.

Let $f: Y \longrightarrow X$ be a uniform nc Mori contraction as in main thm.

イロト イヨト イヨト イヨト

æ

Let $f : Y \longrightarrow X$ be a uniform nc Mori contraction as in main thm.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Apply $\pi_* : \operatorname{Mod} Y_X \longrightarrow \operatorname{Mod} Y$ to universal quotient

 $\mathcal{O}_{\mathsf{Y}} \otimes_{X} \mathcal{O}_{\mathsf{X}} \longrightarrow \mathcal{M}$

Let $f: Y \longrightarrow X$ be a uniform nc Mori contraction as in main thm.

- 4 同 1 4 目 1 4 目 1 9 9 9 9 9

Apply $\pi_* : \operatorname{Mod} Y_X \longrightarrow \operatorname{Mod} Y$ to universal quotient

 $\mathcal{O}_{\mathsf{Y}} \otimes_{\mathsf{X}} \mathcal{O}_{\mathsf{X}} \longrightarrow \mathcal{M} \qquad \rightsquigarrow \qquad \nu : \mathcal{O}_{\mathsf{Y}} \longrightarrow f^* \mathcal{O}_{\mathsf{X}}$

Let $f: Y \longrightarrow X$ be a uniform nc Mori contraction as in main thm.

Apply $\pi_* : \operatorname{\mathsf{Mod}} Y_X \longrightarrow \operatorname{\mathsf{Mod}} Y$ to universal quotient

$$\mathcal{O}_{\mathsf{Y}} \otimes_{\mathsf{X}} \mathcal{O}_{\mathsf{X}} \longrightarrow \mathcal{M} \qquad \rightsquigarrow \qquad \nu : \mathcal{O}_{\mathsf{Y}} \longrightarrow f^* \mathcal{O}_{\mathsf{X}}$$

Theorem (C-Nyman)

• Suppose the generic fibre of \mathcal{M} is 1-critical & 1 fibre $\mathcal{M} \in \mathcal{M}$ satisfies

$$Ext^1_Y(M, \mathcal{O}_Y) \longrightarrow Ext^1_Y(M, M)$$
 is

surjective.

Let $f: Y \longrightarrow X$ be a uniform nc Mori contraction as in main thm.

Apply $\pi_* : \operatorname{\mathsf{Mod}} Y_X \longrightarrow \operatorname{\mathsf{Mod}} Y$ to universal quotient

$$\mathcal{O}_{\mathsf{Y}} \otimes_{\mathsf{X}} \mathcal{O}_{\mathsf{X}} \longrightarrow \mathcal{M} \qquad \rightsquigarrow \qquad \nu : \mathcal{O}_{\mathsf{Y}} \longrightarrow f^* \mathcal{O}_{\mathsf{X}}$$

Theorem (C-Nyman)

• Suppose the generic fibre of \mathcal{M} is 1-critical & 1 fibre $\mathcal{M} \in \mathcal{M}$ satisfies

$$Ext^1_Y(M, \mathcal{O}_Y) \longrightarrow Ext^1_Y(M, M)$$
 is

surjective. Then ν is injective &

Let $f: Y \longrightarrow X$ be a uniform nc Mori contraction as in main thm.

Apply $\pi_* : \mathsf{Mod} Y_X \longrightarrow \mathsf{Mod} Y$ to universal quotient

$$\mathcal{O}_{\mathsf{Y}} \otimes_{\mathsf{X}} \mathcal{O}_{\mathsf{X}} \longrightarrow \mathcal{M} \qquad \rightsquigarrow \qquad \nu : \mathcal{O}_{\mathsf{Y}} \longrightarrow f^* \mathcal{O}_{\mathsf{X}}$$

Theorem (C-Nyman)

 Suppose the generic fibre of M is 1-critical & 1 fibre M ∈ M satisfies
 M ∈ M satisfies
 H¹(M ⊗ ω_Y)* = Ext¹_Y(M, O_Y) → Ext¹_Y(M, M) = k is
 surjective. Then ν is injective & h¹(M ⊗ ω_Y) = 1.

Let $f: Y \longrightarrow X$ be a uniform nc Mori contraction as in main thm.

Apply $\pi_* : \mathsf{Mod} \ Y_X \longrightarrow \mathsf{Mod} \ Y$ to universal quotient

$$\mathcal{O}_{\mathsf{Y}} \otimes_{\mathsf{X}} \mathcal{O}_{\mathsf{X}} \longrightarrow \mathcal{M} \qquad \rightsquigarrow \qquad \nu : \mathcal{O}_{\mathsf{Y}} \longrightarrow f^* \mathcal{O}_{\mathsf{X}}$$

Theorem (C-Nyman)

- Suppose the generic fibre of M is 1-critical & 1 fibre M ∈ M satisfies
 H¹(M ⊗ ω_Y)* = Ext¹_Y(M, O_Y) → Ext¹_Y(M, M) = k is surjective. Then ν is injective & h¹(M ⊗ ω_Y) = 1.
- Suppose every $M \in \mathcal{M}$ is 1-critical &

Let $f: Y \longrightarrow X$ be a uniform nc Mori contraction as in main thm.

Apply $\pi_* : \mathsf{Mod} \ Y_X \longrightarrow \mathsf{Mod} \ Y$ to universal quotient

$$\mathcal{O}_{\mathsf{Y}} \otimes_{\mathsf{X}} \mathcal{O}_{\mathsf{X}} \longrightarrow \mathcal{M} \qquad \rightsquigarrow \qquad \nu : \mathcal{O}_{\mathsf{Y}} \longrightarrow f^* \mathcal{O}_{\mathsf{X}}$$

Theorem (C-Nyman)

- Suppose the generic fibre of M is 1-critical & 1 fibre M ∈ M satisfies
 H¹(M ⊗ ω_Y)^{*} = Ext¹_Y(M, O_Y) → Ext¹_Y(M, M) = k is
 surjective. Then ν is injective & h¹(M ⊗ ω_Y) = 1.
- Suppose every M ∈ M is 1-critical & every simple quotient P of such an M has h⁰(P) = 1. Then

Let $f : Y \longrightarrow X$ be a uniform nc Mori contraction as in main thm.

Apply $\pi_* : \operatorname{Mod} Y_X \longrightarrow \operatorname{Mod} Y$ to universal quotient

$$\mathcal{O}_{\mathsf{Y}} \otimes_{\mathsf{X}} \mathcal{O}_{\mathsf{X}} \longrightarrow \mathcal{M} \qquad \rightsquigarrow \qquad \nu : \mathcal{O}_{\mathsf{Y}} \longrightarrow f^* \mathcal{O}_{\mathsf{X}}$$

Theorem (C-Nyman)

- Suppose the generic fibre of M is 1-critical & 1 fibre M ∈ M satisfies
 H¹(M ⊗ ω_Y)^{*} = Ext¹_Y(M, O_Y) → Ext¹_Y(M, M) = k is
 surjective. Then ν is injective & h¹(M ⊗ ω_Y) = 1.
- Suppose every M ∈ M is 1-critical & every simple quotient P of such an M has h⁰(P) = 1. Then ν is an isomorphism.

Our plan to establish a ruledness criterion for nc Mori contraction $f: Y \longrightarrow X$ is:

I ≡ ▶ < </p>

Our plan to establish a ruledness criterion for nc Mori contraction $f: Y \longrightarrow X$ is:

• Find $\mathcal{O}_{Y/X}(2)$ via $\omega_{Y/X}^{-1}$ or point scheme to show f is a conic bundle.

Our plan to establish a ruledness criterion for nc Mori contraction $f: Y \longrightarrow X$ is:

Find O_{Y/X}(2) via ω⁻¹_{Y/X} or point scheme to show f is a conic bundle.
 Need nc relative Nakai-criterion. We have a version in point scheme case.

Our plan to establish a ruledness criterion for nc Mori contraction $f : Y \longrightarrow X$ is:

- Find O_{Y/X}(2) via ω⁻¹_{Y/X} or point scheme to show f is a conic bundle.
 Need nc relative Nakai-criterion. We have a version in point scheme case.
- Prove a nc version of Tsen's theorem.