MATH3711: Higher Algebra (2007,S1) Problem Sheet 3 ¹

- 1. Consider the subgroup \mathbb{R} of \mathbb{C} (you need not show it is a subgroup). Describe geometrically, all the cosets of \mathbb{R} in \mathbb{C} . Identify the group \mathbb{C}/\mathbb{R} i.e. show it is isomorphic to a well-known group we have already studied in class.
- 2. Recall that \mathbb{R} is a group when endowed with addition and $H:=\{z\in\mathbb{C}||z|=1\}$ is a subgroup of \mathbb{C}^* . Using the exponential function and the first isomorphism theorem, show that H is isomorphic to a quotient group of \mathbb{R} . State explicitly what this quotient group is. Show using similar methods or otherwise that \mathbb{Q}/\mathbb{Z} is isomorphic to a subgroup of \mathbb{C}^* .
- 3. Let $\phi: \mathbb{C}^* \longrightarrow \mathbb{C}^*: z \mapsto z^n$ for some positive integer n. Show that ϕ is a group homomorphism. Find $\ker \phi$, im ϕ . What isomorphism does the first isomorphism theorem give? Verify that the fibres of ϕ are indeed the cosets of $\ker \phi$.
- 4. Weak version of Chinese remainder theorem. Let m, n be relatively prime positive integers. Consider the homomorphism $\phi: \mathbb{Z} \longrightarrow \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ defined by $\phi(a) = (a + m\mathbb{Z}, a + n\mathbb{Z})$. Find ker ϕ . Compare the orders of $\mathbb{Z}/\ker \phi$ and $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ to determine the image of ϕ . Use the first isomorphism theorem to find which cyclic group $\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ is isomorphic to.
- 5. Let T, U be sets and S be their disjoint union. Consider the subset G of Perm S consisting of permutations σ such that $\sigma(T) = T, \sigma(U) = U$. (Note that G is a subgroup). Use the universal property of products to construct a group isomorphism $G \xrightarrow{\sim} \text{Perm } T \times \text{Perm } U$.
- 6. Let G be the dihedral group of order 2n and N the (unique) cyclic subgroup of order n ($N = \langle \sigma \rangle$ in the lecture notes). Let H be the group generated by any $\tau \notin N$. Verify the third isomorphism theorem in this case and compute explicitly the isomorphism.
- 7. Let D_{∞} be the subgroup of Perm \mathbb{Z} generated by $\sigma: i \mapsto i+1, \tau: i \mapsto -i$. This is called the infinite dihedral group. Show that D_n

¹by Daniel Chan

- is a quotient of D_{∞} i.e. is isomorphic to a quotient group of D_{∞} . Construct a monomorphism from $D_n \longrightarrow \operatorname{Perm} \mathbb{Z}/n\mathbb{Z}$.
- 8. Suppose $N \subseteq G, N' \subseteq G'$. Show that $N \times N'$ is naturally a normal subgroup of $G \times G'$ and show $(G \times G')/(N \times N') \simeq (G/N) \times (G'/N')$.
- 9. Show that any finitely generated abelian group is isomorphic to a quotient of \mathbb{Z}^n for some $n \in \mathbb{N}$.