Stability of Dynamical Systems

A very important application of complex numbers in finance is in analysing dynamical systems. We will look at systems having discrete or continuous time.

Example (discrete): interest on investment

An initial investment of $100 earns interest at an annual rate of 12% compounded monthly. If x_n represents its value in dollars after n months, then

$$x_{n+1} = 1.01x_n, \quad x_0 = 100.$$

The equation for x_{n+1} is called a recurrence relation (or difference equation) and $x_0 = 100$ is the initial condition. This can easily be 'solved' to give

$$x_n = 100(1.01)^n.$$
Stability of Dynamical Systems

Example (continuous): interest on investment

A good approximation for a very short compounding interval is instantaneous compounding.

Let $x(t)$ be the value after t years of a $100 investment earning an annual interest rate of r, compounded every Δt years. Then

$$x(t + \Delta t) = x(t) + r \Delta t x(t), \quad x(0) = 100.$$

So,

$$\frac{x(t + \Delta t) - x(t)}{\Delta t} = rx(t)$$

As $\Delta t \to 0$, this becomes

$$\frac{dx}{dt} = rx, \quad x(0) = 100.$$

This is a linear differential equation with constant coefficients and an initial condition $x(0) = 100$. The solution is

$$x(t) = 100e^{rt}$$

Difference equations

Consider the sequence x_0, x_1, x_2, \ldots of numbers which 'evolve' according to the difference equation

$$x_n + a_1 x_{n-1} + \cdots + a_r x_{n-r} = 0, \quad a_1, \ldots, a_r \in \mathbb{C}.$$

Note that this defines x_n in terms of the preceding r terms

$$x_n = -a_1 x_{n-1} - \cdots - a_r x_{n-r}.$$

This is a linear and homogeneous Discrete Time System. More complicated DTSs are also possible.

Example: Consider the difference equation

$$x_n - 2x_{n-1} + x_{n-2} = 0$$

and show that $x_n = n$ and $x_n = c$ (a constant) are two possible solutions.

Specifying x_0 and x_1 determines all subsequent x_i. Eg, if $x_0 = 3$ and $x_1 = 5$ then

$$x_2 = 2x_1 - x_0 = 2 \times 5 - 3 = 7, \quad x_3 = 2x_2 - x_1 = 2 \times 7 - 5 = 9,$$

and the solution is

$$x_n = 2n + 3.$$
Difference equations

The characteristic equation of the DTS

\[x_n + a_1 x_{n-1} + \cdots + a_r x_{n-r} = 0 \quad \text{is} \quad \lambda^r + a_1 \lambda^{r-1} + \cdots + a_r = 0. \]

If \(\alpha \in \mathbb{C} \) is a root of the characteristic equation with multiplicity \(m \), then for \(k = 0, 1, \ldots, m-1 \), and \(A \in \mathbb{C} \),

\[x_n = A n^k \alpha^n \]

is a solution of the DTS. (The general solution is a sum of such solutions.)

Check for \(r = 2 \) and \(k = 0 \):

\[x_n + a_1 x_{n-1} + a_2 x_{n-2} = A \alpha^n + a_1 A \alpha^{n-1} + a_2 A \alpha^{n-2} = A \alpha^{n-2} (\alpha^2 + a_1 \alpha + a_2) = 0. \]

Check for \(r = 2 \) and \(k = 1 \): First note that the characteristic equation is

\[(\lambda - \alpha)^2 = 0 \Rightarrow \lambda^2 - 2\alpha \lambda + \alpha^2 = 0 \Rightarrow a_1 - 2\alpha, \ a_0 = \alpha^2.\]

\[x_n - 2\alpha x_{n-1} + \alpha^2 x_{n-2} = A n \alpha^n - 2\alpha A (n-1) \alpha^{n-1} + \alpha^2 A \alpha^{n-2} \]

\[= A \alpha^{n-2} (n-2(n-1) + n + 2) = 0. \]

Stability of Discrete Time Systems

We say a solution to the DTS is

- **stable** if \(|x_n| \to 0 \) as \(n \to \infty \),
- **unstable** if \(|x_n| \to \infty \) as \(n \to \infty \).

We don’t define stability for other asymptotic behaviour.

If

\[x_n = n^k \alpha^n \]

for some \(k \geq 0, \alpha \in \mathbb{C} \) then

\[|x_n| = n^k |\alpha|^n \]

and so the solution \(x_n = n^k \alpha^n \) is

- **stable** if \(|\alpha| < 1 \),
- **unstable** if \(|\alpha| > 1 \).

The general solution to the DTS is a sum of such solutions and every solution is stable if all roots of the characteristic equation have modulus less than 1. If any root has modulus greater than 1 then there are unstable solutions.
Stability of Discrete Time Systems

Example: Are the solutions to the DTS

\[2x_n - x_{n-1} + x_{n-2} = 0 \]

stable? The characteristic equation is

\[2\lambda^2 - \lambda + 1 = 0 \]

which has roots

\[\alpha_{\pm} = \frac{1 \pm \sqrt{1 - 8}}{4} = \frac{1}{4} \pm \frac{i\sqrt{7}}{4}. \]

Since

\[|\alpha_{\pm}| = \left|\frac{1}{4} \sqrt{1 + 7}\right| = \frac{\sqrt{8}}{4} < 1 \]

all solutions are stable.

Example: The DTS

\[x_n + x_{n-1} + x_{n-3} + 2x_{n-4} = 0 \]

has unstable solutions because the product of the roots of the characteristic equation is 2 and hence there must be a root \(\alpha \) with \(|\alpha| > 1 \).

What about roots with modulus 1? Consider a DTS with roots \(re^{i\theta} \) and \(re^{-i\theta} \), where \(r, \theta \in \mathbb{R} \).

\[
x_n = A\left(re^{i\theta}\right)^n + B\left(re^{-i\theta}\right)^n \quad A, B \in \mathbb{C}
\]

\[
= Ar^n e^{in\theta} + Br^n e^{-in\theta}
\]

\[
= r^n(A + B)\cos(n\theta) + ir^n(A - B)\sin(n\theta)
\]

\[
= r^nC \cos(n\theta) + r^nD \sin(n\theta)
\]

If the modulus of the roots is 1, that is \(r = 1 \), then we have

\[x_n = C \cos(n\theta) + D \sin(n\theta) \]

where \(C = A + B \), \(D = i(A - B) \).

Example: \(x_n - \sqrt{2} x^{n-1} + x_{n-2} = 0 \).
Consider \(x(t) \) that evolves with time according to the \(r \)\(^{th}\) order linear homogeneous constant coefficient differential equation

\[
\frac{d^r x}{dt^r} + a_1 \frac{d^{r-1} x}{dt^{r-1}} + \cdots + a_r x = 0.
\]

In the calculus half of this course you see that this has solutions of the form

\[x(t) = A t^k e^{\alpha t} \]

where \(\alpha \) is a root of the characteristic equation

\[
\lambda^r + a_1 \lambda^{r-1} + \cdots + a_r = 0
\]

with multiplicity \(m > k \) and \(A \in \mathbb{C} \) is a constant. The general solution of the differential equation is a sum of solutions of this form.

We say a solution to the CTS is

- **stable** if \(|x(t)| \to 0 \) as \(t \to \infty \),
- **unstable** if \(|x(t)| \to \infty \) as \(t \to \infty \).

We don’t define stability for other asymptotic behaviour.

If

\[x(t) = t^k e^{\alpha t} \]

for some \(k \geq 0 \), \(\alpha = a + bi \) for \(a, b \in \mathbb{C} \) then

\[|x(t)| = |t^k e^{\alpha t}| = |t|^k |e^{at+bi}| = |t|^k |e^{at}| \]

and so the solution \(x(t) = t^k e^{\alpha t} \) is

- **stable** if \(\text{Re}(\alpha) < 0 \),
- **unstable** if \(\text{Re}(\alpha) > 0 \).

The general solution to the CTS is a sum of such solutions and every solution is stable if all roots of the characteristic equation have real part less than 0. If any root has real part greater than 0 then there are unstable solutions.
Example: Show that

\[\frac{d^4 x}{dt^4} - 2 \frac{d^3 x}{dt^3} + x = 0 \]

has unstable solutions.

The characteristic equation is

\[\lambda^4 - 2\lambda^3 + 1 = 0 \]

The sum of the roots is 2, so there must be a root with positive real part.

One root of this equation is 1 which has positive real part.

The other roots are approximately 1.839286755, -0.4196433777 \pm 0.6062907300i.