MATH1251
Mathematics for Actuarial Studies and Finance
Chapter 9
Eigenvalues and Eigenvectors
Lecture 21

Dr. Jonathan Kress

School of Mathematics and Statistics
University of New South Wales

Semester 2 2010
Powers of matrices

Suppose that $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is a linear map with eigenbasis $\{\mathbf{v}_1, \mathbf{v}_2\}$ and corresponding eigenvalues λ_1, λ_2, that is

$$T(\mathbf{v}_1) = \lambda_1 \mathbf{v}_1 \quad \text{and} \quad T(\mathbf{v}_2) = \lambda_2 \mathbf{v}_2$$
Powers of matrices

Suppose that $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear map with eigenbasis $\{v_1, v_2\}$ and corresponding eigenvalues λ_1, λ_2, that is

$$T(v_1) = \lambda_1 v_1 \quad \text{and} \quad T(v_2) = \lambda_2 v_2$$

It’s easy to apply T repeatedly to its eigenvectors, ie

$$T^2(v_1) = T(T(v_1)) =$$
Powers of matrices

Suppose that $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear map with eigenbasis $\{v_1, v_2\}$ and corresponding eigenvalues λ_1, λ_2, that is

\[T(v_1) = \lambda_1 v_1 \quad \text{and} \quad T(v_2) = \lambda_2 v_2 \]

It’s easy to apply T repeatedly to its eigenvectors, ie

\[T^2(v_1) = T(T(v_1)) = T(\lambda_1 v_1) = \quad \]
Powers of matrices

Suppose that $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is a linear map with eigenbasis $\{v_1, v_2\}$ and corresponding eigenvalues λ_1, λ_2, that is

$$T(v_1) = \lambda_1 v_1 \quad \text{and} \quad T(v_2) = \lambda_2 v_2$$

It’s easy to apply T repeatedly to its eigenvectors, ie

$$T^2(v_1) = T(T(v_1)) = T(\lambda_1 v_1) = \lambda_1 T(v_1) = \lambda_1^2 v_1$$

$$T^2(v_2) = T(T(v_2)) = T(\lambda_2 v_2) = \lambda_2 T(v_2) = \lambda_2^2 v_2$$
Powers of matrices

Suppose that $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is a linear map with eigenbasis $\{v_1, v_2\}$ and corresponding eigenvalues λ_1, λ_2, that is

$$T(v_1) = \lambda_1 v_1 \quad \text{and} \quad T(v_2) = \lambda_2 v_2$$

It’s easy to apply T repeatedly to its eigenvectors, ie

$$T^2(v_1) = T(T(v_1)) = T(\lambda_1 v_1) = \lambda_1 T(v_1) = \lambda_1 \lambda_1 v_1 = \cdots$$
Powers of matrices

Suppose that $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is a linear map with eigenbasis $\{v_1, v_2\}$ and corresponding eigenvalues λ_1, λ_2, that is

$$T(v_1) = \lambda_1 v_1 \quad \text{and} \quad T(v_2) = \lambda_2 v_2$$

It’s easy to apply T repeatedly to its eigenvectors, ie

$$T^2(v_1) = T(T(v_1)) = T(\lambda_1 v_1) = \lambda_1 T(v_1) = \lambda_1 \lambda_1 v_1 = \lambda_1^2 v_1.$$
Suppose that $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear map with eigenbasis $\{v_1, v_2\}$ and corresponding eigenvalues λ_1, λ_2, that is

$$T(v_1) = \lambda_1 v_1 \quad \text{and} \quad T(v_2) = \lambda_2 v_2$$

It’s easy to apply T repeatedly to its eigenvectors, i.e.

$$T^2(v_1) = T(T(v_1)) = T(\lambda_1 v_1) = \lambda_1 T(v_1) = \lambda_1 \lambda_1 v_1 = \lambda_1^2 v_1.$$

A similar calculation for any $k \in \mathbb{Z}^+$ shows that

$$T^k(v_1) = \lambda_1^k v_1 \quad \text{and} \quad T^k(v_2) = \lambda_2^k v_2.$$
Powers of matrices

Suppose that $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is a linear map with eigenbasis $\{\mathbf{v}_1, \mathbf{v}_2\}$ and corresponding eigenvalues λ_1, λ_2, that is

$$T(\mathbf{v}_1) = \lambda_1 \mathbf{v}_1 \quad \text{and} \quad T(\mathbf{v}_2) = \lambda_2 \mathbf{v}_2$$

It’s easy to apply T repeatedly to its eigenvectors, ie

$$T^2(\mathbf{v}_1) = T(T(\mathbf{v}_1)) = T(\lambda_1 \mathbf{v}_1) = \lambda_1 T(\mathbf{v}_1) = \lambda_1 \lambda_1 \mathbf{v}_1 = \lambda_1^2 \mathbf{v}_1.$$

A similar calculation for any $k \in \mathbb{Z}^+$ shows that

$$T^k(\mathbf{v}_1) = \lambda_1^k \mathbf{v}_1 \quad \text{and} \quad T^k(\mathbf{v}_2) = \lambda_2^k \mathbf{v}_2.$$

If T is represented by the matrix A in the standard basis, then we also have have that

$$T^k(\mathbf{v}) = T^{k-1}(T(\mathbf{v})) = \underbrace{A \cdots A}_{k \text{ times}} \mathbf{v}.$$
Powers of matrices

Suppose that $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is a linear map with eigenbasis $\{v_1, v_2\}$ and corresponding eigenvalues λ_1, λ_2, that is

$$T(v_1) = \lambda_1 v_1 \quad \text{and} \quad T(v_2) = \lambda_2 v_2$$

It’s easy to apply T repeatedly to its eigenvectors, i.e.

$$T^2(v_1) = T(T(v_1)) = T(\lambda_1 v_1) = \lambda_1 T(v_1) = \lambda_1 \lambda_1 v_1 = \lambda_1^2 v_1.$$

A similar calculation for any $k \in \mathbb{Z}^+$ shows that

$$T^k(v_1) = \lambda_1^k v_1 \quad \text{and} \quad T^k(v_2) = \lambda_2^k v_2.$$

If T is represented by the matrix A in the standard basis, then we also have have that

$$T^k(v) = T^{k-1}(T(v)) = T^{k-1}(Av) = \ldots$$
Powers of matrices

Suppose that \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) is a linear map with eigenbasis \(\{ \mathbf{v}_1, \mathbf{v}_2 \} \) and corresponding eigenvalues \(\lambda_1, \lambda_2 \), that is

\[
T(\mathbf{v}_1) = \lambda_1 \mathbf{v}_1 \quad \text{and} \quad T(\mathbf{v}_2) = \lambda_2 \mathbf{v}_2
\]

It’s easy to apply \(T \) repeatedly to its eigenvectors, ie

\[
T^2(\mathbf{v}_1) = T(T(\mathbf{v}_1)) = T(\lambda_1 \mathbf{v}_1) = \lambda_1 T(\mathbf{v}_1) = \lambda_1 \lambda_1 \mathbf{v}_1 = \lambda_1^2 \mathbf{v}_1.
\]

A similar calculation for any \(k \in \mathbb{Z}^+ \) shows that

\[
T^k(\mathbf{v}_1) = \lambda_1^k \mathbf{v}_1 \quad \text{and} \quad T^k(\mathbf{v}_2) = \lambda_2^k \mathbf{v}_2.
\]

If \(T \) is represented by the matrix \(A \) in the standard basis, then we also have have that

\[
T^k(\mathbf{v}) = T^{k-1}(T(\mathbf{v})) = T^{k-1}(A\mathbf{v}) = T^{k-2}(AA\mathbf{v}) = \cdots = AA \cdots A \mathbf{v} =
\]
Powers of matrices

Suppose that $T : \mathbb{R}^2 \to \mathbb{R}^2$ is a linear map with eigenbasis $\{v_1, v_2\}$ and corresponding eigenvalues λ_1, λ_2, that is

$$T(v_1) = \lambda_1 v_1 \quad \text{and} \quad T(v_2) = \lambda_2 v_2$$

It’s easy to apply T repeatedly to its eigenvectors, ie

$$T^2(v_1) = T(T(v_1)) = T(\lambda_1 v_1) = \lambda_1 T(v_1) = \lambda_1 \lambda_1 v_1 = \lambda_1^2 v_1.$$

A similar calculation for any $k \in \mathbb{Z}^+$ shows that

$$T^k(v_1) = \lambda_1^k v_1 \quad \text{and} \quad T^k(v_2) = \lambda_2^k v_2.$$

If T is represented by the matrix A in the standard basis, then we also have have that

$$T^k(v) = T^{k-1}(T(v)) = T^{k-1}(Av) = T^{k-2}(AAv) = \cdots = AA\cdots Av = A^k v$$
Powers of matrices

Suppose that $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is a linear map with eigenbasis $\{v_1, v_2\}$ and corresponding eigenvalues λ_1, λ_2, that is

$$T(v_1) = \lambda_1 v_1 \quad \text{and} \quad T(v_2) = \lambda_2 v_2$$

It’s easy to apply T repeatedly to its eigenvectors, ie

$$T^2(v_1) = T(T(v_1)) = T(\lambda_1 v_1) = \lambda_1 T(v_1) = \lambda_1 \lambda_1 v_1 = \lambda_1^2 v_1.$$

A similar calculation for any $k \in \mathbb{Z}^+$ shows that

$$T^k(v_1) = \lambda_1^k v_1 \quad \text{and} \quad T^k(v_2) = \lambda_2^k v_2.$$

If T is represented by the matrix A in the standard basis, then we also have have that

$$T^k(v) = T^{k-1}(T(v)) = T^{k-1}(Av) = T^{k-2}(AAv) = \cdots = A^2 AA \cdots Av = A^k v$$

and

$$A^k v_1 = \lambda_1^k v_1 \quad \text{and} \quad A^k v_2 = \lambda_2^k v_2.$$
Powers of matrices

Note that multiplying diagonal matrices is easy:

\[
\begin{pmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_n
\end{pmatrix}
\begin{pmatrix}
\mu_1 & 0 & \cdots & 0 \\
0 & \mu_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \mu_n
\end{pmatrix}
=
\begin{pmatrix}
\lambda_1\mu_1 & 0 & \cdots & 0 \\
0 & \lambda_2\mu_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_n\mu_n
\end{pmatrix}.
\]
Powers of matrices

Note that multiplying diagonal matrices is easy:

\[
\begin{pmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_n
\end{pmatrix}
\begin{pmatrix}
\mu_1 & 0 & \cdots & 0 \\
0 & \mu_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \mu_n
\end{pmatrix}
= \begin{pmatrix}
\lambda_1 \mu_1 & 0 & \cdots & 0 \\
0 & \lambda_2 \mu_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_n \mu_n
\end{pmatrix}.
\]

The matrix representing \(T \) in its eigenbasis \(B = \{v_1, v_2\} \) is

\[
([T^k(v_1)]_B \ [T^k(v_2)]_B) =
\]
Powers of matrices

Note that multiplying diagonal matrices is easy:

\[
\begin{pmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_n
\end{pmatrix}
\begin{pmatrix}
\mu_1 & 0 & \cdots & 0 \\
0 & \mu_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \mu_n
\end{pmatrix}
= \begin{pmatrix}
\lambda_1 \mu_1 & 0 & \cdots & 0 \\
0 & \lambda_2 \mu_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_n \mu_n
\end{pmatrix}.
\]

The matrix representing \(T \) in its eigenbasis \(B = \{v_1, v_2\} \) is

\[
([T^k(v_1)]_B [T^k(v_2)]_B) = ([\lambda_1^k v_1]_B [\lambda_2^k v_2]_B) =
\]
Powers of matrices

Note that multiplying diagonal matrices is easy:

\[
\begin{pmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_n
\end{pmatrix}
\begin{pmatrix}
\mu_1 & 0 & \cdots & 0 \\
0 & \mu_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \mu_n
\end{pmatrix}
=
\begin{pmatrix}
\lambda_1\mu_1 & 0 & \cdots & 0 \\
0 & \lambda_2\mu_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_n\mu_n
\end{pmatrix}.
\]

The matrix representing \(T \) in its eigenbasis \(B = \{v_1, v_2\} \) is

\[
([T^k(v_1)]_B \ [T^k(v_2)]_B) = ([\lambda_1^k v_1]_B \ [\lambda_2^k v_2]_B) =
\begin{pmatrix}
\lambda_1^k & 0 \\
0 & \lambda_2^k
\end{pmatrix} =
\]
Powers of matrices

Note that multiplying diagonal matrices is easy:

\[
\begin{pmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_n
\end{pmatrix}
\begin{pmatrix}
\mu_1 & 0 & \cdots & 0 \\
0 & \mu_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \mu_n
\end{pmatrix} =
\begin{pmatrix}
\lambda_1 \mu_1 & 0 & \cdots & 0 \\
0 & \lambda_2 \mu_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_n \mu_n
\end{pmatrix}.
\]

The matrix representing \(T \) in its eigenbasis \(B = \{v_1, v_2\} \) is

\[
([\mathbf{T}^k(v_1)]_B \ [\mathbf{T}^k(v_2)]_B) = ([\lambda_1^k v_1]_B \ [\lambda_2^k v_2]_B) = \begin{pmatrix}
\lambda_1^k & 0 \\
0 & \lambda_2^k
\end{pmatrix} = \begin{pmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{pmatrix}^k.
\]
Powers of matrices

Note that multiplying diagonal matrices is easy:

\[
\begin{pmatrix}
\lambda_1 & 0 & \cdots & 0 \\
0 & \lambda_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_n
\end{pmatrix}
\begin{pmatrix}
\mu_1 & 0 & \cdots & 0 \\
0 & \mu_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \mu_n
\end{pmatrix}
=
\begin{pmatrix}
\lambda_1\mu_1 & 0 & \cdots & 0 \\
0 & \lambda_2\mu_2 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_n\mu_n
\end{pmatrix}.
\]

The matrix representing \(T \) in its eigenbasis \(B = \{ v_1, v_2 \} \) is

\[
([T^k(v_1)]_B \ [T^k(v_2)]_B) = ([\lambda_1^k v_1]_B \ [\lambda_2^k v_2]_B) = \begin{pmatrix}
\lambda_1^k & 0 \\
0 & \lambda_2^k
\end{pmatrix} = \begin{pmatrix}
\lambda_1 & 0 \\
0 & \lambda_2
\end{pmatrix}^k.
\]
Powers of matrices

Suppose \(A \) is an \(n \times n \) matrix with eigenvectors \(\{v_1, v_2, \ldots, v_n\} \) that form a basis for \(\mathbb{R}^n \), then if

\[
M = (v_1 \ldots v_n) \quad \text{and} \quad D = \begin{pmatrix}
\lambda_1 & \ldots & 0 \\
\vdots & \ddots & \vdots \\
0 & \ldots & \lambda_n
\end{pmatrix},
\]

where \(\lambda_1, \lambda_2, \ldots, \lambda_n \) are the corresponding eigenvectors, \(M \) diagonalises \(A \), that is,

\[
M^{-1}AM = D \quad \text{or} \quad MDM^{-1} = A.
\]
Powers of matrices

Suppose A is an $n \times n$ matrix with eigenvectors $\{v_1, v_2, \ldots, v_n\}$ that form a basis for \mathbb{R}^n, then if

$$M = (v_1 \ldots v_n) \quad \text{and} \quad D = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix},$$

where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the corresponding eigenvectors, M diagonalises A, that is,

$$M^{-1}AM = D \quad \text{or} \quad MDM^{-1} = A.$$

Then, for $k \in \mathbb{Z}^+$,

$$A^k = AAA \cdots AA$$
Powers of matrices

Suppose A is an $n \times n$ matrix with eigenvectors $\{v_1, v_2, \ldots, v_n\}$ that form a basis for \mathbb{R}^n, then if

$$M = (v_1 \ldots v_n) \quad \text{and} \quad D = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix},$$

where $\lambda_1, \lambda_2 \ldots, \lambda_n$ are the corresponding eigenvectors, M diagonalises A, that is,

$$M^{-1}AM = D \quad \text{or} \quad MDM^{-1} = A.$$

Then, for $k \in \mathbb{Z}^+$,

$$A^k = AAA \cdots AA$$

$$= MDM^{-1}MDM^{-1}MDM^{-1} \cdots MDM^{-1}$$
Powers of matrices

Suppose A is an $n \times n$ matrix with eigenvectors $\{v_1, v_2, \ldots, v_n\}$ that form a basis for \mathbb{R}^n, then if

$$M = (v_1 \ldots v_n) \quad \text{and} \quad D = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix},$$

where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the corresponding eigenvectors, M diagonalises A, that is,

$$M^{-1}AM = D \quad \text{or} \quad MDM^{-1} = A.$$

Then, for $k \in \mathbb{Z}^+$,

$$A^k = AAA \cdots AA$$

$$= MDM^{-1}MDM^{-1}MDM^{-1} \cdots MDM^{-1}$$

$$= MDIDIDI \cdots IDM^{-1}$$
Powers of matrices

Suppose A is an $n \times n$ matrix with eigenvectors $\{v_1, v_2, \ldots, v_n\}$ that form a basis for \mathbb{R}^n, then if

$$M = (v_1 \ldots v_n) \quad \text{and} \quad D = \begin{pmatrix} \lambda_1 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & \lambda_n \end{pmatrix},$$

where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the corresponding eigenvectors, M diagonalises A, that is,

$$M^{-1}AM = D \quad \text{or} \quad MDM^{-1} = A.$$

Then, for $k \in \mathbb{Z}^+$,

$$A^k = AAA \cdots AA$$

$$= MDM^{-1}MDM^{-1}MDM^{-1} \cdots MDM^{-1}$$

$$= MDIDIDI \cdots IDM^{-1}$$

$$= MDDDD \cdots DM^{-1}$$

This gives an easy way to find powers of diagonalisable matrices.
Powers of matrices

Suppose A is an $n \times n$ matrix with eigenvectors $\{v_1, v_2, \ldots, v_n\}$ that form a basis for \mathbb{R}^n, then if

$$M = (v_1 \ldots v_n) \quad \text{and} \quad D = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix},$$

where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the corresponding eigenvectors, M diagonalises A, that is,

$$M^{-1}AM = D \quad \text{or} \quad MDM^{-1} = A.$$

Then, for $k \in \mathbb{Z}^+$,

$$A^k = AAA \cdots AA$$

$$= MDM^{-1}MDM^{-1}MDM^{-1} \cdots MDM^{-1}$$

$$= MDIDIDI \cdots IDM^{-1}$$

$$= MDDDD \cdots DM^{-1}$$

$$= MD^kM^{-1}.$$
Powers of matrices

Suppose A is an $n \times n$ matrix with eigenvectors $\{v_1, v_2, \ldots, v_n\}$ that form a basis for \mathbb{R}^n, then if

$$M = (v_1 \ldots v_n) \quad \text{and} \quad D = \begin{pmatrix} \lambda_1 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & \lambda_n \end{pmatrix},$$

where $\lambda_1, \lambda_2, \ldots, \lambda_n$ are the corresponding eigenvectors, M diagonalises A, that is,

$$M^{-1}AM = D \quad \text{or} \quad MDM^{-1} = A.$$

Then, for $k \in \mathbb{Z}^+$,

$$A^k = AAA \cdots AA$$
$$= MDM^{-1}MDM^{-1}MDM^{-1} \cdots MDM^{-1}$$
$$= MDIDIDI \cdots IDM^{-1}$$
$$= MDDDD \cdots DM^{-1}$$
$$= MD^kM^{-1}.$$

This gives an easy way to find powers of diagonalisable matrices.
Powers of matrices

Verify the diagonalisation

\[A = \begin{pmatrix} 0.8 & 0.4 \\ 0.2 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 0.6 & 0 \\ 0 & 1.2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}^{-1} \]

and find \(A^k \).
Discrete time systems

Let

\[x_1(k) = \text{defence expenditure of hobbits in year } k \]
\[x_2(k) = \text{defence expenditure of orcs in year } k \]
Discrete time systems

Let

\[x_1(k) = \text{defence expenditure of hobbits in year } k \]
\[x_2(k) = \text{defence expenditure of orcs in year } k \]

Suppose the populations are separate and year to year changes in expenditure are governed by the recursion relation

\[x_1(k + 1) = 0.8x_1(k) \]
\[x_2(k + 1) = 0.6x_2(k) \]
Discrete time systems

Let

\[x_1(k) = \text{defence expenditure of hobbits in year } k \]
\[x_2(k) = \text{defence expenditure of orcs in year } k \]

Suppose the populations are separate and year to year changes in expenditure are governed by the recursion relation

\[x_1(k + 1) = 0.8x_1(k) \]
\[x_2(k + 1) = 0.6x_2(k) \]

These can be easily solved because they are uncoupled.

\[x_1(k) = A(0.8)^k \quad \text{and} \quad x_2(k) = A(0.6)^k. \]
Discrete time systems

Let

\[x_1(k) = \text{defence expenditure of hobbits in year } k \]
\[x_2(k) = \text{defence expenditure of orcs in year } k \]

Suppose the populations are separate and year to year changes in expenditure are governed by the recursion relation

\[x_1(k + 1) = 0.8x_1(k) \]
\[x_2(k + 1) = 0.6x_2(k) \]

These can be easily solved because they are uncoupled.

\[x_1(k) = A(0.8)^k \quad \text{and} \quad x_2(k) = A(0.6)^k. \]

We can write this in matrix form

\[
\begin{pmatrix}
 x_1(k + 1) \\
 x_2(k + 1)
\end{pmatrix} = \begin{pmatrix}
 0.8 & 0 \\
 0 & 0.6
\end{pmatrix} \begin{pmatrix}
 x_1(k) \\
 x_2(k)
\end{pmatrix}
\]

What if the matrix is not diagonal, ie the recursion relations for \(x_1(k) \) and \(x_2(k) \) are coupled?
Discrete time systems

Let

\[
\mathbf{x}(k) = \begin{pmatrix} x_1(k) \\ x_2(k) \\ \vdots \\ x_n(k) \end{pmatrix}
\]

and \(A \) be an \(n \times n \) matrix. Consider the recurrence relation

\[
\mathbf{x}(k + 1) = A\mathbf{x}(k).
\]

Note that

\[
\begin{align*}
\mathbf{x}(1) &= A\mathbf{x}(0) \\
\mathbf{x}(2) &= A\mathbf{x}(1) = A^2\mathbf{x}(0) \\
\mathbf{x}(3) &= A\mathbf{x}(2) = A^3\mathbf{x}(0) \\
\vdots \\
\mathbf{x}(k) &= A^k\mathbf{x}(0)
\end{align*}
\]

So, to write down the general solution we need an expression for \(A^k \).
Suppose A is an $n \times n$ matrix with eigenvectors $\{v_1, v_2, \ldots, v_n\}$ that form a basis for \mathbb{R}^n, then with $\lambda_1, \lambda_2 \ldots, \lambda_n$ the corresponding eigenvectors. Then the solution to

$$x(k + 1) = Ax(k)$$

is

$$x(k) = \alpha_1 \lambda_1^k v_1 + \alpha_2 \lambda_2^k v_2 + \cdots + \alpha_n \lambda_n^k v_n$$

for arbitrary scalars $\alpha_1, \alpha_2, \ldots, \alpha_n$.
Suppose the hobbit and orc defence expenditures are coupled and governed by the recursion relation

\[
x_1(k + 1) = 0.8x_1(k) + 0.4x_2(k)
\]
\[
x_2(k + 1) = 0.2x_1(k) + x_2(k)
\]
Suppose the hobbit and orc defence expenditures are coupled and governed by the recursion relation

\[
\begin{align*}
x_1(k+1) &= 0.8x_1(k) + 0.4x_2(k) \\
x_2(k+1) &= 0.2x_1(k) + x_2(k)
\end{align*}
\]

We can write this in matrix form

\[
\begin{pmatrix}
x_1(k+1) \\
x_2(k+1)
\end{pmatrix} =
\begin{pmatrix}
0.8 & 0.4 \\
0.2 & 1
\end{pmatrix}
\begin{pmatrix}
x_1(k) \\
x_2(k)
\end{pmatrix}
\]

Find the general solution to this recurrence relation and also the expenditure in the \(k\)th year if initially the hobbits spend 1 piece of gold and the orcs spend 0.