Lecture 23: Intro to Eigenbases

Inevitable Woffle

Q Why did we introduce abstract notion of vector spaces?

A 1. To handle infinite dim
2. Defn is

Let $V = \text{vector space/ field } \mathbb{F}$

Next few lectures, study lin maps of form

i.e. domain =

Aim $T : V \rightarrow V$ often picks out its own preferred coord system/basis for V. Wish to describe this
E.g. 1 \(V := 3\)-dim space of

\[
T : V \longrightarrow V \text{ is rotatn about axis } L = \text{Span } \mathbf{u} \text{ about angle } \theta.
\]

N.B. Can check geom that \(T \) is

Let \(P = \)

Preferred coord system has \(L \)

i.e. if \(\mathbf{w} \in P \) is

preferred basis \(\mathcal{B} = \{ \)
W.r.t \mathcal{B}

E.g. 2 $V := \text{space of 2-dim}$

Let $L =$

Let $T : V \rightarrow V$ be reflection about L

Let $S : V \rightarrow V$ be orthog

Let $L' =$
Preferred Basis is
Matrix representing T is

Matrix representing S is

Key Notion The subspaces L, L', P above are examples of invariant subspaces.

Defn Let $T : V \rightarrow V$ be lin. A subspace
W of V

In this case, restricting domain to W gives linear

E.g. L, L', P in

Remark The matrices above obtained using “preferred” bases have “block diagonal” form with blocks representing $T|_W$ where W

Eigenvectors

Optimal scenario when invariant subspaces
are 1-dim so blocks have smallest size.

Q When’s this occur?
Ans: $W = \text{Span } \mathbf{v}$ is T-invariant iff

(*)

Defn (Eigenvector) If $\mathbf{v} \neq 0$ is as in (*) above we say that

E.g. 2 again

\mathbf{u}, \mathbf{v} are
E-values are
\begin{align*}
\lambda & \quad T & \quad S \\
\mathbf{u} & \\
\mathbf{v} &
\end{align*}

E.g. 3
\[
A = \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix}, T = T_A:
\]

E.g. 4 \(V = C^\infty \)
\[T : V \longrightarrow V \] is differentiation.

Thm Let \(T : V \longrightarrow V \) be

Suppose \(B = \{v_1, \ldots, v_n\} \) is

The matrix representing \(T \) wrt \(B \) is the diagonal matrix

Proof: Generalised matrix representation thm (lecture 11) shows
Change of Basis

Let A be an $n \times n$-matrix so T_A:

Let $B = \{f_1, \ldots, f_n\}$

Q What’s matrix rep T_A wrt

Let $M = (f_1 \ldots f_n)$

Thm 2 The matrix C rep
Proof: Need prove first

Lemma $S_B(v) := [v]_B =$

Proof: $f_i = M e_i = M[f_i]_B$

$\therefore S_B(f_i) =$

The linear maps S_B

Resume proof thm: $C = ([A f_1]_B \ldots [A f_n]_B)$

E.g. 5 Suppose $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ has e-
vectors

\[\mathbf{v}_1 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 3 \\ 2 \end{pmatrix} \]

with e-values 1,2. Find matrix \(A \) rep \(T \).

Ans: