Lecture 19: Scaling. Normal Distribution

Aim Introduce the most important distribution, the normal distribution.

Probability Density of \(g(X) \)

\(X \) cont random var with

Let \(g(x) \) be increasing diff’ble

Lemma Let \(Y = g(X) \) have prob density \(f_1(y) \) where \(y = g(x) \). Then

a) \(F_1(y) = P(Y = g(X) < P(X) \)

b) \(f(x) = g'(x)f_1(g(x)) \)

Proof: a) holds as \(g \)

b) follows from
Important special case is

Scaling

We can scale X to $Y =$

where $a >$

Lemma $\implies f(x)$

or in other words

$f_1(y) =$

Recall from lecture 18

$E(Y) =$

Suppose graph of $f(x)$ is
Note Graph changes by

1) Mean
2) horizontal scale “stretches”
3) vertical scale

How does \(\text{Var}(X) \) change with scaling?

Propn 1 \(\text{Var}(aX + b) = \)

\[\sigma(aX + b) = \]

Proof: \(\text{Var}(aX + b) = E((aX + b)^2) - E(aX + b)^2 \)
cont’d

\[\sigma(aX + b) = \]

Cor If \(X \) has mean \(\mu \) standard deviation \(\sigma \)
then \(Y = \frac{X - \mu}{\sigma} \)

A Useful Integral

Lemma

\[
I := \int_{-\infty}^{\infty} e^{-z^2/2} dz = \sqrt{2\pi}
\]

Proof: Consider solid of revolution on revolving \(w = e^{-x^2/2} \) about \(w \)-axis.
This is graph of

\[r = \]

We’ll compute volume under graph by

Slices: Fix \(x \)

Cross-sectional area \(A(x) = \)
Hence, volume

Cylindrical Shells:

\[
\text{Volume} = \int_0^\infty 2\pi rwdr
\]

\[\therefore I^2 = \]

Standard Normal Distribn

Defn A cont random var Z has standard
normal distrbution if its prob density fn is

$$\phi(z) =$$

Note: 1. Lemma ⇒

2. The graph is symmetrical

Remark It is hard to say at the moment why the normal distribution is so important. We’ll see later. Note for now that it has a similar bell shape to the binomial distribution except that it’s continuous.

E.g. $$B(n = 8, p = .5, k) =$$
Propn Let Z be

a) $E(Z) = \quad$ b) $\sigma(Z) =$

Proof: a) $\phi(z)$ even \implies
b) $\text{Var}(Z) = E(Z^2) =$

Normal Distribn

We scale the standard normal variable Z to get

Defn A cont random var X has normal distribn if

Notn Write $X \sim N(\mu, \sigma^2)$.

Results on scaling show
Facts If \(X \sim \)

a) \(E(X) = \)

b) \(\text{Var}(X) = \)