Lecture 14: Invertible Linear Maps

Aim Lecture Coordinates allow you to identify fin dim vector spaces with
More gen, invertible

Defn (One-to-one) Let X, Y be sets & $f : X \rightarrow Y$ be a function. We say that f is one-to-one (1-1) or injective if the soln

i.e. $f(x) = f(x')$

E.g. 1 $f(x) = x^2$ is not

Notion of 1-1 simplifies in the linear case.

Propn 2 Let $T : V \rightarrow W$ be linear.
Then T is 1-1 iff
Proof: Recall from lecture 12 propn 2 that given \(w \in W \) & particular

\[
\therefore \text{soln is unique}
\]

E.g. 2 Show the soln to the IVP

\[
\frac{dy}{dx} - y = \frac{\pi^x}{\sqrt{e^{\cos x} + \cosh x^\pi}}, y(0) = 0
\]

is unique?

Ans: Let \(T \) be defined by

Note \(T \) is linear being

By propn, suffice show ker \(T = 0 \)
i.e. (*)
has unique soln \(y = 0 \).

Defn (Onto) A fn \(f : X \rightarrow Y \) is

i.e. \(\text{im } f \)

Inverse Functions
Let \(X, Y \) be sets and \(f : X \rightarrow Y \) any fn.

Propn-Defn The following condns on \(f \) are equivalent.
a) f is 1-1 &

b) the eqn $f(x) = y$ always has a
denoted $x = $

c) there’s a fn $g :$

Proof: Clear a) & b) equiv
If b) holds, then c) holds on

Conversely, if $g : Y \rightarrow X$ is as in c), then

$x = g(y)$ is

Check is a soln: $f(g(y))$

Unique: if also $f(x') = y =

x' = g($

Propn 3 If $T : V \rightarrow W$ is linear and
invertible then

Proof: in case $T = T_A$ for $A \in M_{mn}(\mathbb{F})$.
Since T is invertible, $T \mathbf{x} = A \mathbf{x} = \mathbf{b}$ always

Hence, $T^{-1} =$

E.g. 3 Let $V = \text{vector space/ field } \mathbb{F}$
$B = \{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$
Define $S_B : V \longrightarrow \mathbb{F}^n$ by
Recall $S_B(x_1 \mathbf{v}_1 + \ldots + x_n \mathbf{v}_n) =$
Thm lecture 7 \Rightarrow
S_B is invertible since $S_B(\mathbf{v}) = (x_1, \ldots, x_n)^T$
has unique soln
Part a) of following propn generalises fact that a subspace has smaller dimension than the ambient space.

Propn 4 Let $T : V \rightarrow W$ be linear.

Let $B = \{v_1, \ldots, v_n\} \subset$

a) T 1-1 & B lin indep \Rightarrow

Hence if W is finite dim then so is

b) T onto & B a spanning set \Rightarrow

Proof: a) We’ll show $T(B)$ is

Suppose $0 =$

Need all $\lambda_i = 0$.

$0 =$
T 1-1 \implies

B lin indep

Hence $T(B)$ is

If B is a basis, then lecture 8 cor 1 \implies

b) Sim, see proof lemma 2 lecture 9.

Cor If $T : V \to W$ is an invertible

Then bases (resp. spanning sets, resp. lin indep sets) of V & W correspond via T & T^{-1}.

E.g. 4 Let $B := \{v, w\}$ be a basis for V.

Then $\{v + w, v - w\}$

Why? Consider invertible lin map S_B:
Hence \(\{ \mathbf{v} + \mathbf{w} \} \)

Propn 5 Let \(T : V \rightarrow W \) be a lin map

Consider invertible \(S_r : V' \rightarrow V, \ S_l \)

\(S_lT S_r : \)

a) \(\ker(S_lT S_r) = \)

b) \(\text{im} \ (S_lT S_r) = \)

Proof: a) \(\mathbf{x} \in \ker(S_lT S_r) \) iff

iff

b) \(S_lT S_r(V') = \)

We can now prove propn 3, lecture 12 &
propn 1, lecture 13.
Cor Let $T : V \longrightarrow W$ be of dimensions $n \& m$.

& B_V, B_W be finite ordered

Let A be the matrix

a) The corresp map on coord vectors is $T_A =$

b) $[\ker T]_{B_V} =$

c) $[\text{im } T]_{B_W} =$

Proof: a) is an easy ex. In fact, you can prove the gen matrix reprn thm by applying matrix reprn thm to

b) $\ker A =$

c) is almost identical.
A nice application of rank-nullity is the following.

Propn 6 Let $T : V \rightarrow W$ be linear and suppose $\dim V = \dim W$ is finite.

Then T is invertible iff either

Proof: If T is 1-1: $\text{null } T = 0 \implies \text{rank } T =$

If T is onto: