Aim Lecture For $T : V \rightarrow W$ linear, understand when you can solve

Image

Defn-Propn (Image) Let $T : V \rightarrow W$ be linear. The image of T is

Also rank $T :=$

If $T = T_A$ also write

Note $\text{im } A = \text{col } A$.

Proof: Follows easily from subspace thm-defn. We’ll just check closure under addn. For $v, w \in V$,
so \(\text{im } T \) is closed

E.g. 1 \(T : \mathbb{R}^3 \rightarrow \mathbb{R}^3 \) orthog projn onto

Finding Bases for Image

For \(\mathbb{F}^m \) case, we computed bases for \(\text{col}(A) \) in thm 2 lecture 9. We reduce to this case using

Propn 1 Let \(T : V \rightarrow W \) be

& \(B_V, B_W \) be finite ordered

Let \(A \) be the matrix

Then \([\text{im } T]_{B_W} = \)

E.g. 2 Let \(M = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \).
Define $T : M_{22}(\mathbb{F}) \rightarrow M_{22}(\mathbb{F})$ by $TC := MC$. Note that T is linear by

Find a basis for $\text{im } T$ and rank T.

Ans: First find matrix $A \in M_{44}(\mathbb{F})$ representing T wrt

$e_{11} =$

$$
T \begin{pmatrix}
1 & 0 \\
0 & 0 \\
0 & 0
\end{pmatrix}
$$
Hence $A = (T$

$= \ldots$

We compute a basis for $\text{col}(A)$ as in lecture 9.

$A \rightarrow \ldots$

Hence a basis is

$v_1 = \ldots$

They correspond to

$C_1 = \ldots$
By propn 1 & lemma 2 of lecture 9,
\(\{C_1, C_2\} \) is

Rank-Nullity Thm

Thm Let \(T : V \longrightarrow W \) be a linear map,
\(V, W \) finite dim.

Let \(A \) be a matrix

wrt

Let \(U \) be a row

a) null \(T = \) no. non-leading columns

b) rank \(T = \)

c) (Rank-Nullity) \(\dim V = \) no.

Proof: Do easy case only where \(T = T_A : \)
\(\mathbb{F}^n \longrightarrow \mathbb{F}^m \) where \(A = (v_1 \ldots v_n) \)
a) Each non-leading column in U gives a param in

\therefore gives a basis

\therefore null $A =$

& a) holds.

b) Thm 2, lecture 9 gives basis

$\{v_i | i$

so b) holds.

c) Add a) & b)

Gen case reduces to this one using methods of lecture 14.

E.g. 3 A geometric picture illustrating rank-nullity thm
Let $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be an orthog projn onto 1-dim subspace W.
E.g. 4 We’ll use the rank-nullity thm to show that the intersection of \(m \) hyperplanes through \(0 \) in \(\mathbb{R}^n \) has

For \(\mathbf{v}_1, \ldots, \mathbf{v}_m \in \mathbb{R}^n - \mathbf{0} \) consider the hyperplanes

\[H_i := \]

Now \(\mathbf{v} \cdot \mathbf{v}_i = \mathbf{v}_i^T \mathbf{v} \implies H_i = \]

Hence, \(\cap H_i = \cap \ker \mathbf{v}_i^T = \)

Now \(\text{im } A \) is a sub
so rank $A =$
Hence $\dim \cap H_i = \dim \ker A =$

E.g. 5 Let $A \in M_{nn}$. Define fn $T : M_{nn} \rightarrow M_{nn}$ by
$TB := AB$
Show $\text{im } T \neq$

Ans Check 1st T is linear. If $B, C \in$
$T(B + C) =$

Also $T(\lambda B) =$
So T is
If $A = 0$ then $\text{im } T = 0$ so suppose
so $A \in$

$\dim \text{im } T =$