Lecture 7: Trigonometric identities from complex numbers

Aim Lecture Euler’s formula suggests

Binomial Formula

Defn-Propn For $n \in \mathbb{N}, 0 \leq$

the binomial

It’s the no. ways of picking

Binomial Thm

$$(a + b)^n =$$
Why?

Facts 1. $e^{i\theta} =$
2. $\sin \theta =$
3. $\cos \theta =$

Proof From picture

2. (3. is similar)

e.g. 1 Write $\sin^4 \theta$ in terms of \cos

A $\sin^4 \theta =$
\[= \frac{1}{4}(e^{i4\theta} - 4e^{i3\theta} e^{-i\theta} + \ldots) \]

N.B. \(\sin^4 \theta \) is an even

Uses Can integrate

Rem Fourier theory (taught in 2nd yr) shows that any nice fn of period \(2\pi \) can be expanded as above using constants, \(\cos \theta \),

Conversely, \(\sin n\theta \), \(\cos n\theta \) can be converted back to a polynomial
e.g. 2 Write \(\sin 3\theta, \cos 3\theta \)

A De Moivre \(\implies \)

\[
\cos 3\theta + i \sin 3\theta
\]

Equate

\[
\cos 3\theta =
\]

\[
\sin 3\theta =
\]

The answer is not

\[
\cos 3\theta = \cos^3
\]
Bizarre Application

Solve $4z^3 - 3z = \frac{\sqrt{3}}{2}$

A Suppose there is a soln of form $z = \cos \theta$

So $4z^3 - 3z = \cos \theta$, $\frac{\sqrt{3}}{2}$ =

Hence 3θ =

See algebra notes Ch 1, ex.61 for more info. Method generalises to higher order poly if you use “elliptic” fns.

Sums of trig fns

e.g. 3 Find

$\Sigma := \cos \theta + \cos 3\theta + \cos (2n + 1)\theta$.

A Σ =

But the sum of a
\[e^{i2\theta} - 1 = \]

\[e^{i(2n+3)\theta} \]