Lecture 9: Existence & Construction of Bases

Aim We show the existence of bases in the finite dimensional case and illustrate methods of finding them.

Thm 1 Let $V = \text{vector space}/\text{field } \mathbb{F}$

Let $S \subset V$ be a spanning set of n elts. Any subspace W

Proof: Consider all lin indep subsets $B = \{w_1, \ldots, w_m\}$ of W.

Pick one such B with

This is possible as thm 1 lecture 8 \implies
We seek to show that B is a basis.

Why? Since B is lin indep we need only

Let $w \in W$. Since B was chosen so that m

was maximal,

Consider non-trivial

If $\lambda = 0$

Solving for w

Since w was an arbitrary element of W, B
Found basis as max lin indep subset. Method was non-constructive i.e. there’s no algorithm with which to construct a basis.

Classification of Subspaces of \mathbb{R}^3

Let $W = \dim \mathbb{R}^n = n$ so thm 1 \implies

$W =$

If $n = 3$ there are

$m=0:$

$m=1:$

$m=2:$
m=3:
\[\therefore \text{the 3 lin indep} \]

Constructing Bases

Thm 2 (Reducing spanning sets to bases)

Let \(A = (v_1 \ v_2 \ldots \ v_n) \). Recall \(\text{col}(A) = \)

Let \(U \) be a

Then we have the following basis of \(\text{col}(A) \)

\[B = \{v_i\} \]

Proof: will hopefully be clear from following

e.g. (else see notes §6.7.3 p.48)

E.g. 1

\[
A = \begin{pmatrix} 1 & -1 & 1 & 2 \\ 1 & 1 & 0 & 3 \\ 1 & -3 & 2 & 1 \end{pmatrix} = (v_1 \ v_2 \ v_3 \ v_4)
\]
Find a basis for $\text{col}(A)$.

Ans:

1st & 2nd

Thm 2 \implies

Why did it work? i.e.

Check lin indep: Omitting 3rd & 4th column
from above calculation, we see

Check span: 3rd & 4th columns correspond to parameters in soln

Pick soln \mathbf{x} with

Back substn \implies

$$\mathbf{0} = A \mathbf{x} =$$

Sim, setting

get soln $\mathbf{x} =$
so $v_4 \in$

\therefore Span(v_1, v_2) =

Hence, $\{v_1, v_2\}$ is lin indep & spans col(A)
so is a basis.

Thm 3 (Completing a lin indep set to a basis)

Suppose W is a subspace of \mathbb{F}^m and $S = \{v_1, \ldots, v_n\} \subset W$

There exists a basis B of

Proof: In fact we have

Algorithm for finding B

Let $\{w_1, \ldots, w_r\}$ be

Consider the matrix
\[A = \]

Note \(\text{col}(A) \supseteq \)

so

Hence we can apply the method of thm 2 to

Note: \(\{\mathbf{v}_1, \ldots, \mathbf{v}_n\} \) lin indep \(\implies \)

\[\because \text{the basis } B \text{ produced by this method} \]

Hopefully, the reason why this works will be clear from the following e.g.

E.g. 2 Let \(S = \{\mathbf{v}_1 = (1, 2, -1)^T, \mathbf{v}_2 = (3, 2, -1)^T\} \). Extend \(S \) to a basis of \(\mathbb{R}^3 \).
Ans: Note vectors not parallel \(\implies \)
Let \(\mathbf{w}_1 \),

1st, 2nd & 4th

i.e.

Why did it work? i.e.
If either the 1st or 2nd column was not lead-
ing then, ignoring

we see we can solve

This contradicts

Remark What happens to this method if S is lin dependent so that S cannot form part of a basis?

Ans: Method produces a basis with as many members of S as possible.

More Results on Dim

Propn Let W be a subspace of
If \(\dim V = \dim W \) then

E.g. 3 The only 10-dim subspace of

Proof Propn: Let \(B \) be a basis for \(W \).

\(B \) is

Cor 1 lecture 8 \(\iff \)

\(\therefore \)