1. Given the following equation in a group $x^{-1}yxz^2 = 1$, solve for y.

2. In any group G, show that $(g^{-1})^{-1} = g$ for any $g \in G$. Show for any $m, n \in \mathbb{Z}$ that $g^m g^n = g^{m+n}$ and $(g^m)^n = g^{mn}$.

3. Prove, disprove or salvage if possible the following statement: Given subgroups $J, H \leq G$, the union $H \cup J$ is a subgroup of G.

4. Let G be a group and $H \subseteq G$. Show that H is a subgroup iff it is non-empty and for every $h, j \in H$ we have $hj^{-1} \in H$. This gives an alternative characterisation of subgroups. (There is an analogue of this for subspaces, do you know it?)

5. Let G be a group with group multiplication $\mu : G \times G \to G$. We define a new group multiplication by $\nu : G \times G \to G : (g, g') \mapsto \mu(g', g)$. We let G^{op} be the set G equipped with this map. Show that G^{op} is a group. (It is called the opposite group to G). Remark: when there are two group structures on a set, then a product expression like gg' can mean two different things depending on which multiplication you use. A simple remedy is to introduce more complicated notation like $g * g' := \nu(g, g')$, $gg' := \mu(g, g')$. Then the relation between the two group structures is $g * g' = g'g$.

6. Let $GL_n(\mathbb{Z})$ be the set of $n \times n$ matrices M with integer entries such that M^{-1} exists and also has integer entries. Show that $GL_n(\mathbb{Z})$ forms a group when endowed with matrix multiplication.

7. In this question, we identify 1×1 matrices with their unique entry so that $GL_1(\mathbb{C})$ gets identified with \mathbb{C}^*, the non-zero elements in \mathbb{C}. Let μ be the subset of roots of unity of \mathbb{C}^*. (Recall that a root of unity is a complex number ζ such that $\zeta^n = 1$ for some integer n). Show that, μ is a subgroup of \mathbb{C}^*. Show that the subset μ_n of nth (not necessarily primitive) roots of unity is in turn a subgroup of μ.

8. (Mildly non-trivial according to my students in previous years.) Show that any finitely generated subgroup of μ is cyclic. Show that μ is not finitely generated and find a non-trivial subgroup of μ which is not finitely generated.

9. Consider the following permutation in two-line notation

$$
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
3 & 5 & 1 & 2 & 4
\end{pmatrix}
$$

Write the permutation out in cycle notation.

10. Compute $(123)(1354)(123)^{-1}$ (your answer should be in cycle notation).

11. Consider a permutation $\sigma \in S_n$ and a k-cycle $(a_1a_2 \ldots a_k)$. Express the product $\sigma(a_1 \ldots a_k)\sigma^{-1}$ in cycle notation. What is its order?

1by Daniel Chan
12. Write out the multiplication table for S_3.

13. For elements g, h in a group, show that gh and hg have the same order.

14. Show that a finite group of odd order has an even number of elements of order 2.

15. In the symmetric group S_6, describe all the elements of the subgroup H generated by the 3 generators (12), (34), (56). In particular, what is the order of H?

16. Describe explicitly, the subgroup H of $GL_2(\mathbb{C})$ generated by the matrices

$$
\begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}
\text{ and }
\begin{pmatrix}
\zeta & 0 \\
0 & \zeta^{-1}
\end{pmatrix}
$$

where ζ is a primitive n-th root of unity. This is the binary dihedral group.

17. Determine explicitly the elements of the cyclic group generated by

$$
\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix}.
$$

18. Consider the matrix

$$
J = \begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}.
$$

Let $Sp_2(\mathbb{R}) := \{A| A \text{ is a real 2 by 2 matrix, } A^t JA = J\}$. Show that $Sp_2(\mathbb{R})$ is a subgroup of $GL_2(\mathbb{R})$. It is called the symplectic group.

19. Find the order of the permutation (12)(345). More generally, given disjoint cycles σ, τ, find the order of $\sigma \tau$.

20. Find the orders of all elements in the dihedral group D_n. Find all subgroups of D_n.

21. Show that the subset $SL_n(\mathbb{R}) \subset GL_n(\mathbb{R})$ of matrices of determinant 1 is a subgroup.

22. For a k-cycle $(a_1 a_2 \ldots a_k)$, when is $(a_1 a_2 \ldots a_k)^2$ a cycle.

23. Let $H < S_5$ be the subgroup of the symmetric group generated by (23), (34). Describe H in such a way that it allows you to compute the order of H. What is the order? (Hint: there is a simple reason why H has at most 6 elements.)

24. Let T be a subset of S. Show that $\{ \sigma \in \text{Perm } S | \sigma(t) = t \text{ for every } t \in T \}$ is a subgroup of $\text{Perm } S$. Suppose that $S = S_3$ and T is the subset of 3-cycles. What is the order of this subgroup?

25. Let $S = \mathbb{C} - \{1, 0\}$. Describe the subgroup of $\text{Perm } S$ generated by the functions $f : S \rightarrow S : z \mapsto 1 - z, g : S \rightarrow S : z \mapsto 1/z$. (In this case, you can describe the group by listing all the elements and writing out the multiplication table).

26. Given subsets J, K of a group G, show that if $K \subseteq \langle J \rangle$ and $J \subseteq \langle K \rangle$ then $\langle J \rangle = \langle K \rangle$.

27. Show that if S is a subset of G such that $ss' = s's$ for any $s, s' \in S$ then $\langle S \rangle$ is an abelian group.