
RATIONAL TRIGONOMETRY:
COMPUTATIONAL VIEWPOINT

Olga Kosheleva
Department of Teacher Education

University of Texas at El Paso
El Paso, TX 79968, USA

olgak@utep.edu
Main idea behind rational trigonometry. Traditional trigonome-
try uses non-algebraic functions such as sin(x) or cos(x) to �solve�
triangles, i.e., to use the values of some of its parameters (sides a1,
a2, a3, angles A1, A2, A3) for �nding the values of others parame-
ters. The use of non-algebraic functions complicates mathematical
analysis, makes computations more dif�cult, and makes trigonome-
try more dif�cult to learn.

To avoid these dif�culties, N. J. Wildberger proposed to describe
each side ai by its square si

def
= a2

i (which he calls quadrance), and
each angle Ai by its �spread� Qi

def
= sin2(Ai). In these terms, all the

formulas become algebraic: e.g., the sine law takes the form
s1

Q1

=
s2

Q2

=
s3

Q3

;

see, e.g., (Wildberger 2005) and (Henle 2007). These formulas are
called rational trigonometry.
Natural alternatives to rational trigonometry. One can easily see
that to avoid non-algebraic functions, it is suf�cient to keep ai and/or
consider Si

def
= sin(Ai) or Ci

def
= cos(Ai). Indeed, e.g., in terms of si

and Si, the sine law takes the algebraic form
s1

S2
1

=
s2

S2
2

=
s3

S2
3

;

and in terms of ai and Ci, the sine law takes the algebraic form

a2
1

1− C2
1

=
a2

2

1− C2
2

=
a2

3

1− C2
3

.



Is rational trigonometry better than its alternatives? From
the purely theoretical viewpoint (of making all the formulas alge-
braic), all the above alternatives are as good as the original rational
trigonometry. However, one can notice that the formulas of rational
trigonometry are somewhat easier that the corresponding formulas
of the alternative trigonometries. So, a natural hypothesis is that
from the computational viewpoint, rational trigonometry is proba-
bly better. This is exactly what we prove in this paper.
Computational viewpoint: a brief description. As we have men-
tioned, the main idea behind rational trigonometry is that algebraic
relations are �better� than non-algebraic ones, and that, e.g., com-
puting a square root is easier than computing a sine.

In real computers, however, only arithmetic operations � addi-
tion, subtraction, multiplication, and division � are directly hardware
supported (and thus faster to compute). All non-arithmetic standard
functions, be it √x or sin(x), take much longer time to compute
� and this time is approximately the same for all such functions,
whether they are algebraic (like √x) or non-algebraic (like sin(x)).

So, from the computational viewpoint, what matters is the num-
ber of calls to all non-arithmetic standard functions.
Case of right triangles. Let us show that for right triangles, in terms
of the number of such calls, rational trigonometry (s,Q) is indeed
better than its alternatives (a, Q), (s, S), (s, C), (a, S), (a, C) � and
than the traditional trigonometry (a,A). For a right triangle
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A2

A1

a1

a2

a3

there are 5 parameters a1, a2, a3, A1, A2. If we know any 2 of
them (except for A1 and A2), we can determine the rest. Modulo
symmetry a1 ↔ a2, A1 ↔ A2, we thus have 5 possible problems:

1. we know a1 and a2;

2. we know a1 and a3;



3. we know a1 and A1;

4. we know a1 and A2;

5. we know a3 and A1.

In rational trigonometry and in alternative trigonometries, we as-
sume that we know the corresponding characteristics of sides and
angles, and we must compute the remaining ones. For example, in
the 1st problem under rational trigonometry, we know s1 and s2, and
we want to compute s3, Q1, and Q2.

In the traditional trigonometry (a,A), in all 5 problems, a non-
arithmetic operation is needed: √x to compute a3 =

√
a2

1 + a2
2 and

a2 =
√

a2
3 − a2

1 in the �rst 2 problems, and trig functions to compute
a2 in other problems.

In (a, S) and in (a, C), we still need √
x to compute a3 =√

a2
1 + a2

2 and a2 =
√

a2
3 − a2

1. In (s, S), once we know S1, we
need √x to compute S2 =

√
1− S2

1 . Similarly, in (s, C), once we
know C1, we need √x to compute C2 =

√
1− C2

1 .
In contrast, in (s,Q), all 5 problems can be solved by using only

arithmetic operations:

1. compute s3 = s1 + s2, Q1 = s1/s3, and Q2 = 1−Q1;

2. compute s2 = s3 − s1, Q1 = s1/s3, and Q2 = 1−Q1;

3. compute s3 = s1/Q1, s2 = s3 − s1, and Q2 = 1−Q1;

4. compute Q1 = 1−Q2, s3 = s1/Q1, and s2 = s3 − s1;

5. compute s1 = s3 ·Q1, s2 = s3 − s1, and Q2 = 1−Q1.

Thus, for right triangles, rational trigonometry is indeed computa-
tionally faster.
Case of general triangles. For general triangles, with A3 possibly
different from π/2 = 90◦, modulo symmetry, we have 5 possible
problems:



1. we know a1, a2, and a3;

2. we know a1, a2, and A3;

3. we know a1, a2, and A1;

4. we know a1, A1, and A2;

5. we know a1, A2, and A3.

All these problems can be solved by using the sine law, the cosine
law

a2
3 = a2

1 + a2
2 − 2a1 · a2 · cos(A3),

and the fact that A1 + A2 + A3 = π.
In (s,Q), the sine law is purely arithmetic; the cosine law takes

the form
s3 = s1 + s2 − 2

√
s1 · s2 · (1−Q3),

with one non-arithmetic operation √x. The formula

A3 = π − (A1 + A2)

leads to

sin2(A3) = (sin(A1) · cos(A2) + sin(A2) · cos(A1))
2,

i.e., to

Q3 = Q1·(1−Q2)+Q2·(1−Q1)+2
√

Q1 · (1−Q2) ·Q2 · (1−Q1),

also with one non-arithmetic operation √x. So, all 5 problems can
be solved by using at most one non-arithmetic operation √x:

1. use the cosine law to compute 1−Q3 =
(s1 + s2 − s3)

2

4s1 · s2

and
similarly Q1 and Q2; 0 non-arithmetic operations;

2. use the cosine law to compute s3 (one call to √x), then act as
in Problem 1; 1 non-arithmetic operation;



3. use the sine law to compute Q2 = Q1 · (s2/s1), �nd Q3

(one call to √x), then use the sine law to compute s3; 1 non-
arithmetic operation;

4. �nd Q3 (one call to √x), then use the sine law to compute s2

and s3; 1 non-arithmetic operation;

5. �nd Q1 (one call to √x), then use the sine law to compute s2

and s3; 1 non-arithmetic operation.

One can check that in the traditional trigonometry (a,A) and
in all alternatives (a,Q), (s, S), (s, C), (a, S), (a, C), for one of the
above 5 problems, at least two non-arithmetic operations are needed.
Speci�cally:

• In (a, S), for the 2nd problem, the only law we can apply is
the cosine law; this application requires two calls to √x: �rst
to compute cos(A3) as

√
1− S2

3 and the second to compute
a3 =

√
a2

1 + a2
2 − 2a1 · a2 · cos(A3).

• In (a,A), for this same 1st problem, we need an arccosine
function to �nd A3 and then one more arcsine or arccosine to
�nd one angle A1 or A2 (once two angles are known, we can
�nd the third one as π − A3 − A1.

• In (a, C) and (s, C), for the 3rd problem, the only law we
can apply is the sine law; this application requires two calls
to √x: �rst to compute S1 = sin(A1) as

√
1− C2

1 and then,
after computing S2, to compute C2 =

√
1− S2

2 .

• Finally, in (s, S), for the 2nd problem, we need one square
root to compute the cosine C3, and then at least one more
square root to �nd S1 after applying the sine law s1/S

2
1 =

s3/S
2
3 .

Other alternatives? Instead of using ai or si = a2
i , we could use an

arbitrary function f(si). Similarly, instead of Ai or Qi = sin2(Ai),



we could use an arbitrary function F (Qi). We have shown that for si

and Qi, we need 0 non-arithmetic operations for right triangles and
at most 1 for general triangles. A natural question is: for what other
functions f(x) and F (x) is this property true?

For the right triangle, the Pythagoras theorem leads to s3 =
s1 + s2. We want to compute f(s3) from f(s1) and f(s2) with-
out using any non-arithmetic operations, i.e., by applying a rational
function. So, the desired function f(x) must satisfy the property
f(s1+s2) = R(f(s1), f(s2)) for some rational function R(x, y). As
proven in (Aczel 2006), such functions are either rationally equiv-
alent to f(x) = x � i.e., have the form f(x) =

a · x + b

c · x + d
� or to

f(x) = exp(k · x). One can check that for f(x) = exp(k · x), other
formulas cannot be arithmetic, so, in essence, we have to consider
f(x) = x and the quadrance f(si) = si = a2

i .
Similarly, one can prove that we have to consider a function

F (x) = x, i.e., in effect, the spread F (Qi) = Qi = sin2(Ai).
Strictly speaking, we can consider functions are known to be either
rationally equivalent to F (x) = x. Let us give some trig-relevant
examples:

• For F (x) = 1− x, we get cos2(Ai).

• For F (x) = x/(1− x), we get tan2(Ai).

• For F (x) = (1− x)/x, we get cot2(Ai).

• For F (x) = 1/x, we get cosec2(Ai) = 1/ sin2(Ai).

• For F (x) = 1/(1− x), we get sec2(Ai) = 1/ cos2(Ai).

Conclusions. Traditional trigonometry uses non-algebraic functions
like sin(x) to �solve triangles�, i.e., to �nd some parameters of the
triangle from the others. In (Wildberger 2005), N. J. Wildberger
showed that if we characterize each side ai by its �quadrance� si

def
=

a2
i and each angle Ai by its �spread� Qi

def
= sin2(Ai), then all the

formulas for solving triangles become algebraic. Formulas using si

and Qi are called rational trigonometry.



The above �algebraic property� holds not only for the rational
trigonometry (i.e., for the combination of si and Qi), but also for
other combinations: e.g., for ai and Si

def
= sin(Ai). Which combina-

tion should be select?
One of the main original objectives behind the algebraic property

is the desired reduction of computation time. In view of this fact, in
this paper, we analyze which combination leads to the smallest com-
putation time. In modern computers, any non-arithmetic operation
is much slower than an arithmetic one, so it is reasonable to use the
number of non-arithmetic operations as a measure of computation
time. We have shown that for si and Qi, we need 0 non-arithmetic
operations to solve right triangles and at most 1 non-arithmetic op-
eration to solve general triangles. We have also shown that every
combination which with this property is (rationally equivalent to) si

and Qi. Thus, rational trigonometry is indeed the computationally
fastest way of solving triangles.
Open questions. In the above text, we only considered triangles.
What happens if we similarly analyze more complex geometric con-
structions? Constructions in spherical, hyperbolic (Lobachevsky),
or pseudo-Euclidean space?

In some cases, the traditional approach is clearly computation-
ally faster. For example, if a straight line segment consists of two
disjoint subsegments of lengths a1 and a2, then the total length a is
arithmetically computable as a = a1 + a2, but computing the total
spread requires a call to the function √x: s = s1 + s2 + 2

√
s1 · s2.

Similarly, rotation by a given angle becomes more computationally
dif�cult in the rational trigonometry. Is it possible to characterize
such cases?
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