A new proof of an old formula

The number of sub-cubes in an $n \times n \times n$ stack of $1 \times 1 \times 1$ cubes is $1^3 + 2^3 + \cdots + n^3$; the number of rectangles on an $n \times n$ checkerboard is \(\binom{n+1}{2}^2 = (1 + 2 + \cdots + n)^2 \).

Position an $n \times n \times n$ stack of cubes in the first octant in \mathbb{R}^3 so that one corner is at the origin, the opposite corner at (n, n, n); position an $n \times n$ checkerboard in the first quadrant in \mathbb{R}^2 with one corner at the origin, the opposite corner at (n, n).

Let the sub-cube whose corner closest to the origin is (x, y, z) and whose corner furthest from the origin is $(x + k, y + k, z + k)$ correspond, if $x \geq y$, to the rectangle whose corner closest to the origin is (y, z) and whose corner furthest from the origin is $(x + k, z + k)$, or, if $x < y$, to the rectangle whose corner closest to the origin is (z, x) and whose corner furthest from the origin is $(z + k, y + k)$.

This is a one-to-one correspondence between the sub-cubes and the rectangles. It follows that

\[1^3 + 2^3 + \cdots + n^3 = (1 + 2 + \cdots + n)^2. \]