I will report on recent advances which follow on from the proof of the Kato Square Root Problem. One result concerns the spectral theory of the Dirac-type operator $d + d^*_g$ on a compact Riemannian manifold M. It is that the positive and negative eigenspaces of the self-adjoint operator $d + d^*_g$ depend analytically on L^∞ changes in the metric g.

In joint work with Andreas Axelsson and Stephen Keith, we showed that some key ideas in the proof of the Kato problem can be applied to obtain quadratic estimates for perturbations $\Pi_B = d + B^{-1}d^*B$ of a Dirac-type operator $\Pi = d + d^*$ acting in $L^2(\mathbb{R}^n, \Lambda)$. The operator B is multiplication by an L^∞ matrix-valued function with uniformly positive real part. Our result has not only the Kato square root theorem as a corollary, but includes many results in the Calderón program such as the boundedness of the Cauchy operator on Lipschitz curves and surfaces.