A Simple Finite Element Code
written in Julia

Bill McLean, UNSW

ANZMC Melbourne December 2014
Purpose

Required for the computational component of an honours course (3 hours/week for 6 weeks) on finite elements.
Purpose

Required for the computational component of an honours course (3 hours/week for 6 weeks) on finite elements.

Suffices for code to handle

- second-order, linear elliptic PDEs in 2D,
- P_1-elements (triangular, degree 1).
Purpose

Required for the computational component of an honours course (3 hours/week for 6 weeks) on finite elements.

Suffices for code to handle

- second-order, linear elliptic PDEs in 2D,
- P_1-elements (triangular, degree 1).

Expect students to study the source code to understand FEM, particularly matrix assembly. Should not be a “black box”.
Purpose

Required for the computational component of an honours course (3 hours/week for 6 weeks) on finite elements.

Suffices for code to handle

- second-order, linear elliptic PDEs in 2D,
- P_1-elements (triangular, degree 1).

Expect students to study the source code to understand FEM, particularly matrix assembly. Should not be a “black box”.

Students also use the code in an assignment.
Why Julia?

- Modern alternative to Matlab.
- MIT licence and good documentation.
- Cross-platform: Linux, Windows and OS X.
- Easy, student-friendly syntax.
- Fast execution thanks to LLVM.
- Extensive bindings to standard numerical libraries.
Why Julia?

- Modern alternative to Matlab.
- MIT licence and good documentation.
- Cross-platform: Linux, Windows and OS X.
- Easy, student-friendly syntax.
- Fast execution thanks to LLVM.
- Extensive bindings to standard numerical libraries.

Ported code from previous version written in Python.
Overview of FEM solution process

Geometry description (.geo) file

Gmsh

Mesh description (.msh) file

Julia script

Postprocessing (.pos) file

Gmsh

Graphical output

- GPL software with comprehensive documentation.
- Cross-platform: Linux, Windows and OS X.
- Fast and robust meshes in 2D and 3D.
- Convenient data format for FEM.
- Extensive visualisation features.
- Reasonably easy to handle simple geometries.
Gmsh

- GPL software with comprehensive documentation.
- Cross-platform: Linux, Windows and OS X.
- Fast and robust meshes in 2D and 3D.
- Convenient data format for FEM.
- Extensive visualisation features.
- Reasonably easy to handle simple geometries.

FEM code has no other software dependency.
Package modules

Gmsh.jl Handles reading and writing of Gmsh data files.

FEM.jl Handles assembly of linear system.

PlanarPoisson.jl Routines to compute element stiffness matrix, element load vector, etc.
Package modules

Gmsh.jl Handles reading and writing of Gmsh data files.
FEM.jl Handles assembly of linear system.
PlanarPoisson.jl Routines to compute element stiffness matrix, element load vector, etc.

How many lines of code?

$ wc *.jl
 229 657 6469 FEM.jl
 249 823 7850 Gmsh.jl
 152 518 4423 PlanarPoisson.jl
 630 1998 18742 total
Simple example

\[-\nabla^2 u = 4 \]

\[u = 0 \]
Weak formulation and finite element approximation

Sobolev space $H^1_0(\Omega)$ consists of those $u \in L^2(\Omega)$ such that $\partial_x u$ and $\partial_y u \in L^2(\Omega)$, with $u = 0$ on Ω.

Weak solution $u \in H^1_0(\Omega)$ satisfies

$$
\int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} 4v \text{ for all } v \in H^1_0(\Omega).
$$
Weak formulation and finite element approximation

Sobolev space $H^1_0(\Omega)$ consists of those $u \in L^2(\Omega)$ such that $\partial_x u$ and $\partial_y u \in L^2(\Omega)$, with $u = 0$ on Ω.
Weak solution $u \in H^1_0(\Omega)$ satisfies

$$\int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} 4v \quad \text{for all } v \in H^1_0(\Omega).$$

Approximate Ω by triangulated domain Ω_h.
Finite element space S_h consists of all continuous, piecewise-linear functions that vanish on $\partial \Omega_h$; thus, $S_h \subseteq H^1_0(\Omega_h)$.
Finite element solution $u_h \in S_h$ satisfies

$$\int_{\Omega_h} \nabla u_h \cdot \nabla v = \int_{\Omega_h} 4v \quad \text{for all } v \in S_h.$$
Describe the geometry

Create file `keyhole.geo` containing:

Point(1) = {-1, 0, 0};
Point(2) = {-1, -2, 0};
Point(3) = {1, -2, 0};
Point(4) = {1, 0, 0};
Point(5) = {0, 1, 0};
Point(6) = {0, 1+sqrt(2), 0};

Line(1) = {1, 2};
Line(2) = {2, 3};
Line(3) = {3, 4};
Circle(4) = {4, 5, 6};
Circle(5) = {6, 5, 1};
Label the domain and boundary

Line Loop(7) = {1, 2, 3, 4, 5};
Plane Surface(1) = { 7 };

Physical Surface("Omega") = { 1 };
Physical Line("Gamma") = { 1, 2, 3, 4, 5 };
Triangulate the domain

Use Gmsh GUI or CLI to create file keyhole.msh.
Solver script

using Gmsh
using FEM
using PlanarPoisson

mesh = read_msh_file("keyhole.msh")
essential_bc = ["Gamma"]
f(x) = 4.0

vp = VariationalProblem(mesh, essential_bc)
add_bilin_form!(vp, "Omega", grad_dot_grad!)
add_lin_functnl!(vp, "Omega", source_times_func!, f)

A, b = assembled_linear_system(vp)
ufree = A \ b
u = complete_soln(ufree, vp)

open("keyhole.pos", "w") do fid
 write_format_version(fid)
 save_warp_nodal_scalar_field(u, "u", mesh, fid)
end
Visualisation
Geometric element type

In the Gmsh module.

```plaintext
immutable GeomType
    gmsh_code :: Integer
    dimen      :: Integer
    nonodes    :: Integer
end

const LINE      = GeomType(1, 1, 2)
const TRIANGLE  = GeomType(2, 2, 3)
const TETRAHEDRON = GeomType(4, 3, 4)

const GETGEOMTYPE = { 1 => LINE, 2 => TRIANGLE, 4 => TETRAHEDRON }
```
Mesh data structure

immutable Mesh
 coord :: Array{Float64, 2}
 physdim :: Dict{String, Integer}
 physnum :: Dict{String, Integer}
 physname :: Dict{Integer, String}
 elmtype :: Dict{String, GeomType}
 elms_of :: Dict{String, Matrix{Integer}}
 nodes_of :: Dict{String, Set{Integer}}
end

For example,

 mesh.coord[:,n] = x, y, z coordinates of nth node,

 mesh.elms_of["Omega"] = connectivity matrix for elements in Ω.
FEM data structures

immutable DoF

isfree :: Vector{Bool}
freenode :: Vector{Integer}
fixednode :: Vector{Integer}
node2free :: Vector{Integer}
node2fixed :: Vector{Integer}

end

immutable VariationalProblem

mesh :: Mesh
dof :: DoF
essential_bc :: Vector{ASCIIString}
bilin_form :: Vector{Any}
lin_functnl :: Vector{Any}
ufixed :: Vector{Float64}

end
Inhomogeneous Dirichlet data

```julia
function assign_bdry_vals!(vp::VariationalProblem,
    name::String, g::Function)
    if !(name in vp.essential_bc)
        error("$name: not listed in essential_bc")
    end
    for nd in vp.mesh.nodes_of[name]
        i = vp.dof.node2fixed[nd]
        x = vp.mesh.coord[:,nd]
        vp.ufixed[i] = g(x)
    end
end
```
Matrix assembly

\[
A = \text{sparse(Int64[], Int64[], Float64[], nofree, nofree)}
\]
\[
b = \text{zeros(nofree)}
\]
\[
\text{for (name, elm_mat!, coef) in vp.bilin_form}
\]
\[
\quad \text{next} = \text{assembled_matrix(name, elm_mat!,}
\]
\[
\quad \text{coef, mesh, dof)}
\]
\[
A += \text{next}[:,1:nofree]
\]
\[
\text{if nofixed} > 0
\]
\[
\quad b -= \text{next}[:,nofree+1:end] * \text{vp.ufixed}
\]
\[
\text{end}
\]
\[
\text{end}
\]
\[
\text{for (name, elm_vec!, f) in vp.lin_functnl}
\]
\[
\quad \text{next} = \text{assembled_vector(name, elm_vec!, f,}
\]
\[
\quad \text{mesh, dof)}
\]
\[
\quad b += \text{next}
\]
\[
\text{end}
\]
A more complicated example

\[-\nabla \cdot (a \nabla u) = f\]

$$u = -|x|/2$$

- $a = 1$
- $f = 1$

- $a = 10$
- $f = 4$
Weak formulation and finite element approximation

\[S = \{ v \in H^1(\Omega) : v = -|x|/2 \text{ for } x \in \text{Black} \}, \]
\[T = \{ u \in H^1(\Omega) : v = 0 \text{ for } x \in \text{Black} \}. \]

Weak solution \(u \in \mathcal{H} \) satisfies

\[\int_{\text{Blue}} \nabla u \cdot \nabla v + 10 \int_{\text{Green}} \nabla u \cdot \nabla v = \int_{\text{Blue}} v + \int_{\text{Green}} 4v - \int_{\text{Red}} v \]

for all \(v \in T \).
Weak formulation and finite element approximation

\[\mathcal{S} = \{ \nu \in H^1(\Omega) : \nu = -|x|/2 \text{ for } x \in \text{Black} \}, \]
\[\mathcal{T} = \{ u \in H^1(\Omega) : \nu = 0 \text{ for } x \in \text{Black} \}. \]

Weak solution \(u \in \mathcal{H} \) satisfies

\[\int_{\text{Blue}} \nabla u \cdot \nabla \nu + 10 \int_{\text{Green}} \nabla u \cdot \nabla \nu = \int_{\text{Blue}} \nu + \int_{\text{Green}} 4 \nu - \int_{\text{Red}} \nu \]

for all \(\nu \in \mathcal{T} \).

Finite element solution \(u_h \in \mathcal{S}_h \) satisfies

\[\int_{\text{Blue}_h} \nabla u_h \cdot \nabla \nu + 10 \int_{\text{Green}_h} \nabla u_h \cdot \nabla \nu = \int_{\text{Blue}_h} \nu + \int_{\text{Green}_h} 4 \nu - \int_{\text{Red}_h} \nu \]

for all \(\nu \in \mathcal{T}_h \).
Setting up the variational problem

g(x) = -\text{hypot}(x[1], x[2])/2
assign_bdry_vals!(vp, "North", g)
add_bilin_form!(vp, "Major",
 grad_dot_grad!, 1.0)
add_lin_functnl!(vp, "Major",
 source_times_func!, x->1.0)
add_bilin_form!(vp, "Minor",
 grad_dot_grad!, 10.0)
add_lin_functnl!(vp, "Minor",
 source_times_func!, x->4.0)
add_lin_functnl!(vp, "East",
 bdry_source_times_func!, x->-1.0)
add_lin_functnl!(vp, "West",
 bdry_source_times_func!, x->-1.0)
Visualisation

4604 nodes, 9291 triangles.