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Part |

Sub-diffusion Equation
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Classical diffusion

Density of particles u = u(x, t) satisfies
up — V- (KVu) = f(x,t) forxe€ Qandt >0,

for a diffusivity K > 0 and source density f.
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Classical diffusion

Density of particles u = u(x, t) satisfies
up — V- (KVu) = f(x,t) forxe€ Qandt >0,

for a diffusivity K > 0 and source density f.

Initial condition u(x,0) = up(x) for x € Q.
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Classical diffusion

Density of particles u = u(x, t) satisfies
up — V- (KVu) = f(x,t) forxe€ Qandt >0,

for a diffusivity K > 0 and source density f.
Initial condition u(x,0) = up(x) for x € Q.

Zero-flux boundary condition du/dn = 0 for x € 0.
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Classical diffusion

Density of particles u = u(x, t) satisfies
up — V- (KVu) = f(x,t) forxe€ Qandt >0,

for a diffusivity K > 0 and source density f.
Initial condition u(x,0) = up(x) for x € Q.
Zero-flux boundary condition du/dn = 0 for x € 0.

Absorbing boundary condition u = 0 for x € 9.
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Anomalous sub-diffusion

Density satisfies
u — V- (w, * KVu); = f(x,t) forx € Qand t >0,

where 0 < v < 1 and
t) B tV—l
wy(t) = 10}
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Anomalous sub-diffusion

Density satisfies
u — V- (w, * KVu); = f(x,t) forx € Qand t >0,

where 0 < v < 1 and
tV—l

wy(t) = o)

Riemann—Liouville fractional integral of order v:
t (t _ S)1/71
wy x v(t) = ———v(s)ds.
sovte) = [ )

Thus, (w, * v); = “0F V",
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Interpretation of v

Fractional diffusion equation arises from a CTRW model.
The mean-square displacement of a particle is proportional to t¥.
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Interpretation of v

Fractional diffusion equation arises from a CTRW model.
The mean-square displacement of a particle is proportional to t¥.

Classical diffusion coincides with the limiting case v — 1:
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Interpretation of v

Fractional diffusion equation arises from a CTRW model.
The mean-square displacement of a particle is proportional to t¥.

Classical diffusion coincides with the limiting case v — 1:

wy(t) =t Hr(v) — 1,
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Interpretation of v

Fractional diffusion equation arises from a CTRW model.
The mean-square displacement of a particle is proportional to t¥.

Classical diffusion coincides with the limiting case v — 1:

wy(t) =t Hr(v) — 1,

(wy * KVu)(t) — /Ot KVu(x,s)ds,
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Interpretation of v

Fractional diffusion equation arises from a CTRW model.
The mean-square displacement of a particle is proportional to t¥.

Classical diffusion coincides with the limiting case v — 1:

wy(t) =t Hr(v) — 1,

(wy * KVu)(t) — /Ot KVu(x,s)ds,

(wy * KVu)y — KVu.
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Hilbert space setting

Write

Au= -V -(KVu) and Byv(t) = (wy, * V)t.
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Hilbert space setting

Write
Au= -V -(KVu) and Byv(t) = (wy, * V)t.

Inner product and norm in Ly(2):

(u,v)z/ﬂuvdx and |u|| = +/(u,u).
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Hilbert space setting

Write
Au= -V -(KVu) and B,v(t) = (w, * v);.
Inner product and norm in Ly(2):
(u, v) :/ uvdx and |lu|| =/ (u,u).
Q
Bilinear form on H(Q):

A(u,v) = (Au,v) = / KVu-Vvdx.
Q
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Hilbert space setting

Write
Au= -V -(KVu) and Byv(t) = (wy, * V)t.

Inner product and norm in Ly(2):
(u, v) :/ uvdx and |lu|| =/ (u,u).
Q
Bilinear form on H(Q):

A(u,v) = (Au,v) = / KVu-Vvdx.
Q

Weak formulation:

(ug, v) + A(Byu,v) = (f,v) forall ve HY(Q).
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Separation of variables

Complete orthonormal eigensystem:

Adm = Amdm form=20,1,2, ...
<¢m7¢n> = 5mna

0< <A<

Am — 00 as m — 00.
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Separation of variables

Complete orthonormal eigensystem:

Adm = Amdm form=20,1,2, ...
<¢m7¢n> = 5mna

0< <A<

Am — 00 as m — 00.
Fourier modes up(t) = (u(t), ¢m) satisfy scalar IVP:
U+ AmBuum = fn(t),  um(0) = uom,

where

fm(t) = <f(t)a ¢m>a Uom = <U07 ¢m>
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Laplace transformation

Notation:

0(z) = L{v(t)} = /0 T ety (1) dt.
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Laplace transformation

Notation: .
V(z) = L{v(t)} = /0 e “fv(t)dt.
We transform
U+ AmButm = fm(t),  um(0) = uom,
to obtain

20m(2) — tom + Amz' Y lim(2) = Fn(2).
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Laplace transformation

Notation: -
V(z) = L{v(t)} = /0 e “fv(t)dt.
We transform
U+ AmButm = fm(t),  um(0) = uom,
to obtain
20m(2) = tom + Amz* "V iim(2) = F(2).

Thus, R
uom + fm(z)
Z4+ Apziv’

im(z) =
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Explicit solution

Mittag—Leffler function satisfies

1 1
) — -1) - — )\t —_pr-1)_ -
E,(-\t")=L {z+)\zl’/} — e L {er)\}’

SO

Um(£) = Ey(—Amt”)tom + /O (< Am(t = 5)”) () ds.
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Explicit solution

Mittag—Leffler function satisfies

1 1
) — -1) - — )\t —_pr-1)_ -
E,(-\t")=L {z+)\zl’/} — e L {er)\}’

Um(£) = Ey(—Amt”)tom + /O (< Am(t = 5)”) () ds.
Hence, .
u(t) = E(t)up + A E(t—s)f(s)ds
where
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Plancherel Theorem implies

sm(:l

/ Bov(t)v(t) dt = )/Oooyl_”|\“/(iy)2dy>0.
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Plancherel Theorem implies

/ Byv(t)v(t) dt = s'”(2m)/ Y 0(iy)2 dy > 0.
0

So

/OTA(Buudt Z)\ / By tum(t)um(t) dt > 0.

m=0

Bill McLean Kassem Mustapha Discontinuous Galerkin methods for fractional diffusion problems



Stability via energy argument

Take v = u in the weak formulation:

(W, uy + A(Byu, u) = (f, u).
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Stability via energy argument

Take v = u in the weak formulation:
(W, uy + A(Byu, u) = (f, u).

Since

(W) = 5 Sl

integrating from t =0 to t = T gives

)
éuu(nuz—;ruouzsjo 1F1ull dt.
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Stability via energy argument

Take v = u in the weak formulation:
(W, uy + A(Byu, u) = (f, u).

Since

(W) = 5 Sl

integrating from t =0 to t = T gives

)
éuu(nuz—;ruouzsjo 1F1ull dt.

Existence of a unique mild solution follows, with

o)) < ol +2 | 1F(s)] ds.
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Regularity for homogeneous problem

If f(t) =0 then

u(t) = E(t)uo = ZE( Amt”) (o, om) dm.
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Regularity for homogeneous problem

If f(t) =0 then
u(t) = E(t)uo = Z E(=Amt"){uo, om)Pm.

The mth mode of ug is damped by the factor

E,(—Amt") ~ A\ 177 /T(1 —v),
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Regularity for homogeneous problem

If f(t) =0 then

u(t) = E(t)uo = Z E( )(uo, om) Pm.

The mth mode of ug is damped by the factor
E (—Amt”) ~ A7 /T(1 —v),
implying the smoothing property

AN (B)]| < Colugl, 0<p<1,=0,1,2,....
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Regularity for homogeneous problem

If f(t) =0 then

u(t) = E(t)uo = Z E( )(uo, om) Pm.

The mth mode of ug is damped by the factor
E,(—Amt") ~ A\ 177 /T(1 —v),
implying the smoothing property
t7 AUl ()| < Ce[lugll, 0<p<1,g=0,1,2,....

For classical diffusion, E;(—Amnt) = e ¢ leads to stronger
smoothing:

AR D (D)]| < CEuoll, 0< p < oo,
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Regularity for inhomogenous problem

If up =0 then

u(t):/o E(t —s)f(s)ds
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Regularity for inhomogenous problem

If ug = 0 then .
u(t):/ E(t —s)f(s)ds
0
and we can show

q+1

t
t9)| AulD (1) < Ct‘”Z/ s/ F9(s)]| ds.
j=0"9
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Regularity for inhomogenous problem

If ug = 0 then .
u(t):/ E(t —s)f(s)ds
0
and we can show

q+1

t
t9)| AulD (1) < Ct‘”Z/ s/ F9(s)]| ds.
j=0"9

Analysis of DG methods uses estimates of the form

97 Al (1) < Ct° with o > 0.
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Regularity for inhomogenous problem

If ug = 0 then .
u(t):/ E(t —s)f(s)ds
0
and we can show

1
t9)| AulD (1) < Ct—vqf:/tsf\f@(s)u ds.
j=0"0
Analysis of DG methods uses estimates of the form
97 Al (1) < Ct° with o > 0.
For instance, o = v/2 valid if

IAYuo|| < 00 and  H[IFI()| < Ct/*Y, 0<j<q+1.
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Part Il

Various Numerical Methods
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Implicit finite difference scheme

Langlands and Henry, J. Comput. Phys. 205:719-737, 2005.

Consider
U — (Wy * Uy )r =0 for0<x<Land0<t<T,

with
u(x,0) = up(x), ux(0,t) = 0 = uy(L, t).
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Implicit finite difference scheme

Langlands and Henry, J. Comput. Phys. 205:719-737, 2005.

Consider
U — (Wy * Uy )r =0 for0<x<Land0<t<T,

with
u(x,0) = up(x), ux(0,t) = 0 = uy(L, t).

For step sizes Ax = L/P and At = T /N, seek
Up = u(xp, tn) for (xp, ta) = (PAx, nAt),

where 0 < p< Pand0<n<N.
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Approximations

A formula of Oldham and Spanier gives

v—1 v 0 n ) )
(e~ s (A4S V-V 41 ~(n-i)] )
j=1

at (x,t) = (xp, tn)-
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Approximations

A formula of Oldham and Spanier gives

v—1 v 0
(us)s rﬁ:y)(nlvﬁz(w Vi a0 (i)
=1

at (x,t) = (xp, tn)-

Combine with
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Final scheme

Write

Un, —2Up+Up-
wi=(+1) - and 6U5 =P = p-1.

then

n n—1 v—
Ur—ust At
At M(1+v)

v’ 152 US+Y  wo (67 US4 Ug;l))
j=1
for1<n< Nand 0<p <P,
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Final scheme

Write

Un, —2Up+Up-
wi=(+1) - and 6U5 =P = p-1.

then

n n—1 v—
Ur—ust At
At M(1+v)

v’ 152 US+Y  wo (67 US4 Ug;l))
j=1
for1<n< Nand 0<p <P,
with
Uy =U7f and Up,,=Up_;.
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Final scheme

Write

Un, —2Up+Up-
wi=(+1) - and 6U5 =P = p-1.

then

n n—1 v—
Ur—ust At
At M(1+v)

v’ 152 US+Y  wo (67 US4 Ug;l))
j=1
for1<n< Nand 0<p <P,

with
Uy =U7f and Up,,=Up_;.

Scheme is implicit: put a = woAt”/I(1 + v) then

un - 352U3 = UI’J’_1 + (terms in (52U2, e 62U£‘1)-
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Convergence behaviour

Scheme is unconditionally stable, and computational experiments
indicate that

Up = u(xp, tn) + O(AL” + Ax?).
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Convergence behaviour

Scheme is unconditionally stable, and computational experiments
indicate that

Up = u(xp, tn) + O(AL” + Ax?).

As v — 1 we have wj = (j +1)" —j¥ — 1 so

A1 V12,0 L O 2, s27—1 2,0
W(V” 5 UP+ZWn_J(5 Ué_(s Ui) ) —>(5 Up,
j=1

and we recover the implicit Euler scheme for classical diffusion:

un — Un—l
P P — §2yn
N 52U,
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Convolution quadrature

Lubich, Numer. Math. 52: 129-145, 1988.

Seek weights ¢; such that

f*g tn Z¢n—]g tj
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Convolution quadrature

Lubich, Numer. Math. 52: 129-145, 1988.

Seek weights ¢; such that
f * g tn Z an—jg tj

Laplace inversion formula gives

(F + g)(t /27“/ (=97 (7) dz g(s) ds

f(t—s)

fz)/ 2(t=5)g(s) ds dz.

1
T omi
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Auxiliary ODE

Put .
y(t:2) = / -9g(s) ds
0

so that

(f+ g)(t) = 1/r1A‘(z)y(t;z) dz.

27
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Auxiliary ODE

Put .
y(t:7) = / (-9 g(s) ds
0

so that

(f+ g)(t) = 1/r1A‘(z)y(t;z) dz.

2mi
Since y' = zy + g and y(0) = 0, we have y(t,; z) = Y"(z) where

yn _ yn—l

A =zY"+g(t,), Y°=0,
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Auxiliary ODE

Put

t
y(t:7) = / (-9 g(s) ds
0

so that

(f+ g)(t) = 1/r1A‘(z)y(t;z) dz.

2mi
Since y' = zy + g and y(0) = 0, we have y(t,; z) = Y"(z) where
yn _ yn—l
A = ZY" 4+ g(t,), Y°=0,

so
1 (o om
(f xg)(tn) = 27Tl_/rf(z)Y dz.
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Generating functions

Write

then
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Generating functions

Write 0
S‘/(C) = Z Yngn7
n=0
then 5
©) §(0) =290 + 20, A0 =1-¢.
SO
Y(0) = (5(0) At —2) '8 (0),
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Generating functions

Write -
V) => v,

n=0

then 5
© g0 =270+ 20, 50=1-¢
SO
Y(¢) = (5(Q) At~ —2) T g(¢),
and by Cauchy's theorem,
Frg(0) ~ — [ H(2)V(Q) dz = 7(5(0) A Y)E(©)
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Definition of weights

Compute ¢g, ¢1, ...so that

F(5(¢)/At) = ZM"—"
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Definition of weights

Compute ¢g, ¢1, ...so that

/At Zd)ngn_ N

then
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Definition of weights

Compute ¢g, ¢1, ...so that

then

and so
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Explicit finite difference scheme

Yuste and Acedo, SIAM J. Numer. Anal. 42: 1862-1874, 2005.

Consider

up — K(wy * U )e =0 and  u(—L,t) =0=u(L,t).
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Explicit finite difference scheme

Yuste and Acedo, SIAM J. Numer. Anal. 42: 1862-1874, 2005.

Consider

up — K(wy * U )e =0 and  u(—L,t) =0=u(L,t).

Since L{(wy, * v)¢} = z17V¥(z) we have
n .
(wy * V) = AL an_jVé at (x,t) = (Xp, tn),
j=0

where

Yowd ==
j=0
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Forward difference in time

Finite difference approximations

n+1 _ yyn n _ n n
uzu and  uy ~ 62U0 = —PH 2UP+UP_1
t At o P Ax2
lead to the scheme
n+l _ yyn
Up U

n
L= KA w, 52U
j=0

At
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Forward difference in time

Finite difference approximations

n+1 _ yyn n o n n
uzu and  uy ~ 62U0 = —PH 2UP+UP_1
t At XX P Ax2
lead to the scheme
n+l _ yyn
Up U

n
L= KA w, 52U
j=0

At

If v — 1 then wj — 0 for j > 1 and we recover the explicit Euler
scheme for classical diffusion:

Un+1 _ Un
P P — K 2 n‘
N 0°U,
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Convergence behaviour

Von-Neumann stability condition:

At 1
<

K Ax2 — 22—1/‘
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Convergence behaviour

Von-Neumann stability condition:

At 1
<

K Ax2 — 22—1/‘

Formally, error is O(At + Ax2), but in practice . ...
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Implicit convolution quadrature scheme

Cuesta, Lubich and Palencia, Math. Comp., 75: 673-696, 2006.

Work with integrated equation
U+ wy, x Au = ug + F(t),

where F(t) = [, f(s) ds.
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Implicit convolution quadrature scheme

Cuesta, Lubich and Palencia, Math. Comp., 75: 673-696, 2006.

Work with integrated equation
U+ wy, x Au = ug + F(t),

where F(t fo

Compute weights ¢, satisfying

Zw:a (Q)/A) = (ﬁ?)

so that

n
Wy * VR g Gnj V7.

Jj=0
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Convergence behaviour

Rearrange equation as
(I +wy * A)(u — wp) = —w14u(t)Aug + F(t),

and discretize:

n
U — o+ Y ¢ jAY — uo) = —wir(tn)Auo + F(ts).
j=0
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Convergence behaviour

Rearrange equation as
(I +wy * A)(u — wp) = —w14u(t)Aug + F(t),
and discretize:
n .
U =g+ Y dnjA( = tg) = —wi4y(tn)Aug + F(tn)-
j=0
Error analysis shows

| AP uo |

t1+l/(1fp)

. cmz(”/f”” L) + / 1)l ds)

n

U™ — u(ty)|| < CAtHT

for0<p<2and0<o <L
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Laplace transforms and quadrature

MclLean and Thomée, J. Integral Equations Appl., 22: 57-94,
2010.

We consider
ur + (wy x Au)y = f(t).
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Laplace transforms and quadrature

MclLean and Thomée, J. Integral Equations Appl., 22: 57-94,
2010.

We consider
ur + (wy x Au)y = f(t).

Take Laplace transforms to obtain

zi(z) — up + 21V Adi(z) = F(2),

Discontinuous Galerkin methods for fractional diffusion problems
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Laplace transforms and quadrature

MclLean and Thomée, J. Integral Equations Appl., 22: 57-94,
2010.

We consider
ur + (wy x Au)y = f(t).
Take Laplace transforms to obtain

zi(z) — up + 21V Adi(z) = F(2),

or
(zl + 217V A)i(z) = wo + F(2).
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Laplace transforms and quadrature

MclLean and Thomée, J. Integral Equations Appl., 22: 57-94,
2010.

We consider
ur + (wy x Au)y = f(t).

Take Laplace transforms to obtain
zi(z) — up + 21V Adi(z) = F(2),

or
(zl + 217V A)i(z) = wo + F(2).

Thus, we can find @(z) by solving an elliptic boundary value
problem with complex coefficients.
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Resolvent estimate

Spectrum of A lies in [0, 00) so for each ¢ > 0,

_ C
I =A< 5 for [arg Al 2
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Resolvent estimate

Spectrum of A lies in [0, 00) so for each ¢ > 0,

_ C
I =A< 5 for [arg Al 2

Thus, c
(2l + A)_1|| <=2 for largz| < 7 — .

2|
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Resolvent estimate

Spectrum of A lies in [0, 00) so for each ¢ > 0,

IO =AY <52 for JargAl >

A
Thus,
(2l + A)7Y < ‘(';7 for |argz| <7 — .
We have
(2 + 217V A)ii(z) = up + F(2),
so

(21 + A)i(z) = 2" uo + F(2)],
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Resolvent estimate

Spectrum of A lies in [0, 00) so for each ¢ > 0,

IO =AY <52 for JargAl >

Al
Thus,
(2l + A)7Y < ‘(';7 for |argz| <7 — .
We have
(zl + 227 A)(z) = uo + 7(2),
so

(21 + A)i(z) = 2" uo + F(2)],
which is solvable with

luo + 7(2)|
2]

HLAI(Z)H S CL,D for |argz| S ?
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Integral representation

Laplace inversion formula:
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Integral representation

Laplace inversion formula:

1
U(t) = 277” . Gth\l(Z) dz.

Deform contour I to the curve with parametric representation
z(§) = a+ b(1 —sin(6 — i€)), —00 < § < 00,

which is the left branch of a hyperbola with asymptotes
y = +(x — a— b) cotd.
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Integral representation

Laplace inversion formula:

1
U(t) = 277” . Gth\l(Z) dz.

Deform contour I to the curve with parametric representation
z(§) = a+ b(1 —sin(6 — i€)), —00 < § < 00,
which is the left branch of a hyperbola with asymptotes

y = +(x — a— b) cotd.

Must assume 7(z) is analytic to the right of I'.
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We have ) ~
ut) = 5 [ a(z()2(€) de.

—0o0
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We have ) ~
ut) = 5 [ a(z()2(€) de.

—0o0

Integrand exhibits a double-exponential decay as || — oo, since

|e2(§)t‘ — eat.‘ebt(l—sin § cosh §)‘
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We have ) ~
ut) = 5 [ a(z()2(€) de.

—0o0

Integrand exhibits a double-exponential decay as || — oo, since

|e2(§)t‘ — eat.‘ebt(l—sin § cosh §)‘

Choose a quadrature step k > 0, then

k
u(t) = Un(t) = 5~ e%'0(z)7;,

where
=20§), =7, §=k
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Exponential convergence

Given N and a time scale T, can choose a, b, § so that,
[Un(t) — u(t)]| < Ce "N (||uo|| + max ||F(2)]|) for T <t <2T,

where © > 0 and the max is over z in a certain set including .
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Exponential convergence

Given N and a time scale T, can choose a, b, § so that,
[Un(t) — u(t)]| < Ce "N (||uo|| + max ||F(2)]|) for T <t <2T,
where © > 0 and the max is over z in a certain set including .

We have to solve 2N + 1 elliptic problems to find the @(z;).
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Exponential convergence

Given N and a time scale T, can choose a, b, J so that,

[Un(t) — u(t)]| < Ce "N (||uo|| + max ||F(2)]|) for T <t <2T,
where © > 0 and the max is over z in a certain set including .
We have to solve 2N + 1 elliptic problems to find the @(z;).

The elliptic problems can be solved in parallel.
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Exponential convergence

Given N and a time scale T, can choose a, b, J so that,

[Un(t) — u(t)]| < Ce "N (||uo|| + max ||F(2)]|) for T <t <2T,
where © > 0 and the max is over z in a certain set including .
We have to solve 2N + 1 elliptic problems to find the @(z;).

The elliptic problems can be solved in parallel.

A variation on the method avoids using ?(z) and achieves accuracy
O(e*/“m). The elliptic problems take the form

t
(271 + A)w(z, t) = z¥71 <e2tuo + / e(t=9) £ (s) ds).
0
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Part I11

Discontinuous Galerkin Methods
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Trial space

Nonuniform grid: 0=ty <t < thp < --- < ty = T with
kn = tp — ta—1 and k = maxi<p<p kn.
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Trial space

Nonuniform grid: 0=ty <t < thp < --- < ty = T with
kn = tp — ta—1 and k = maxi<p<p kn.

For each half-open interval I, = (tn—1, tn] we choose a subspace
S, € D(AY?) C HY(Q).
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Trial space

Nonuniform grid: 0=ty <t < thp < --- < ty = T with
kn = tp — ta—1 and k = maxi<p<p kn.

For each half-open interval I, = (tn—1, tn] we choose a subspace
S, € D(AY?) C HY(Q).

Let W, denote the space of piecewise polynomial functions V of
order r:

,
V(t) = Z a,i,tp_1 for t € I,, with a, € S,.
p=1
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Trial space

Nonuniform grid: 0=ty <t < thp < --- < ty = T with
kn = tp — ta—1 and k = maxi<p<p kn.

For each half-open interval I, = (tn—1, tn] we choose a subspace
S, € D(AY?) C HY(Q).

Let W, denote the space of piecewise polynomial functions V of
order r:

,
V(t) = Z a,i,tp_1 for t € I,, with a, € S,.
p=1

Since V may be discontinuous at t,, write

V= V(t) = V(t),  VI=V(h), V"= Vvi- Vv
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Fractional derivative of a discontinuous function

Integration by parts shows that for t € /,,

n—1
B,V(t) = w, (t)V2 + Zwy(t — t;)[V} + continuous terms.
j=1

Thus, B, V/(t) is left-continuous at t = t, but behaves like
(t—th1)" tast—t .
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Weak formulation

Exact solution satisfies

/[(u',v)+A(B,,u, v)] dt:/(f, v) dt

In In

for any continuous test function v : [t,_1, t,] — D(AY?).
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Weak formulation

Exact solution satisfies

/[(u',v)+A(B,,u, v)] dt:/(f, v) dt

In In

for any continuous test function v : [t,_1, t,] — D(AY?).

Discontinuous Galerkin (DG) solution U € W, defined by

(Ut vt + / (U, V) +AB,U, V)] dt
J

for every test function V € W,, with U° = u.
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Piecewise-constant case (implicit Euler)

When r =1, we have U(t) = U" for t € I,, and the DG method
reduces to

(U™, X) + knA(BJU, x) = (U1, x) + ka(F", x)

for all x € S,, where

= - 1
B’V’—I/B,,Udt and f”—/fdt.
kn In kn I,
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Piecewise-constant case (implicit Euler)

When r =1, we have U(t) = U" for t € I,, and the DG method
reduces to

(U™, X) + knA(BJU, x) = (U1, x) + ka(F", x)

for all x € S,, where
1 1
B)=— [ B,Udt and f"=— [ fdt.
kn Ji, kn Ji,

In other words,

< un — Un—l

. ,x> +ABU, x) = (f",x).
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Discrete fractional derivative

We find 1
BIV = k! (WV" - Zﬂnf”)
j=1
where
Bon = / wy(tn — 5) ds = w1y (kn) = Ky /T(L+v) >0,
In

ﬁnj:/[w,,(t,,1—5)—wl,(t,,—s)] ds>0, 1<;j<n-1.

Ij
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Discrete fractional derivative

We find 1
BIV = k! (WV" - Zﬂnf”)
j=1
where
Bon = / wy(tn — 5) ds = w1y (kn) = Ky /T(L+v) >0,
In

By = /[w,,(tnl —8)—wilta—5)]ds>0, 1<j<n-L
1:

J

Thus,
-_— nil .
(U™, X) + BanA(U", x) = (U + ko, X) + > B AL, x).
j=1
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Discrete fractional derivative

We find 1
BIV = k! (WV" - Zﬂnf”)
j=1
where
Bon = / wy(tn — 5) ds = w1y (kn) = Ky /T(L+v) >0,
In

ﬁnj:/[‘du(tn1_5)_Wu(tn_5)] d5>07 1< <n-1.
I.

J

Thus,
-_— nil .
(U™, X) + BanA(U", x) = (U + ko, X) + > B AL, x).
j=1

If v — 1 then B,, — kp and 3,; — 0.
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Stability via energy argument

Taking V = U and using (U', U) = 1(d/dt)||U||?> we find

LR + |02 + / A(B, U, U) dt

Iy

= (LU + /(f, U) dt.
l
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Stability via energy argument

Taking V = U and using (U', U) = 1(d/dt)||U||?> we find

LR + |02 + / A(B, U, U) dt

Iy

= (LU + /(f, U) dt.
l

Summing over j and using positivity we find

n—1 . th
01+ V2R + Y IOPIE < 210 8 + [7ir. ).
0

j=1

Bill McLean Kassem Mustapha Discontinuous Galerkin methods for fractional diffusion problems



Stability via energy argument

Taking V = U and using (U', U) = 1(d/dt)||U||?> we find

LR + |02 + / A(B, U, U) dt

I;
= (UL U + /(f, U) dt.
Iy
Summing over j and using positivity we find

n—1 . th
01+ V2R + Y IOPIE < 210 8 + [7ir. ).
0

j=1

th
o)l < cr<||u°|| +/0 |f||dt).

and then
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Projection operator

Define lNu on /; to be the unique polynomial of order r satisfying

Nu(t;) = u(t))

/[u u(t)tPtdt=0 forp=1,2,...,r—1.
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Projection operator

Define lNu on /; to be the unique polynomial of order r satisfying

Mu(t;) = u(t))
/[u (BO]tPtdt=0 forp=1,2, ..., r—1.

If r =2 then

(t—tn) fortely,
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Error from the time discretization

Suppose S, = L»(2), so there is no space discretization.
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Error from the time discretization

Suppose S, = L»(2), so there is no space discretization.

Write [[v|[; = sup,, [[v(t)[| and J» = (0, t,].
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Error from the time discretization

Suppose S, = L»(2), so there is no space discretization.
Write [[v|[; = sup,, [[v(t)[| and J» = (0, t,].

Optimal approximation:

|u— MNul|;, < c,kg—l/ |ulD(t)||dt forg=1,2,...,r.
In
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Error from the time discretization

Suppose S, = L»(2), so there is no space discretization.
Write [[v|[; = sup,, [[v(t)[| and J» = (0, t,].

Optimal approximation:

|u— MNul|;, < c,kg—l/ |ulD(t)||dt forg=1,2,...,r.
In

Split the DG error into

U-—u=0+n where §=U—-TlueW, and n=TIu—u.
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Error from the time discretization

Suppose S, = L»(2), so there is no space discretization.
Write [[v|[; = sup,, [[v(t)[| and J» = (0, t,].

Optimal approximation:

|u— MNul|;, < c,kg—l/ |ulD(t)||dt forg=1,2,...,r.
In

Split the DG error into
U-—u=0+n where §=U—-TlueW, and n=TIu—u.

Can show

n—1
1613, + 16711 + > lIoVI? < &
j=1

tn
/ (B, An, 0) dt
0
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Piecewise-constant case

If r =1 then

tn n . _. .
/ (B, An, 0) dt = Z< / B, An dt, 9!> = k(B A, ¢)
0 j=1 i

and .
knB[,’An:/ Sa(t)Ad(t) dt.
0
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Piecewise-constant case

If r =1 then

tn n . _. .
/ (B, An, 0) dt = Z< / B, An dt, 9!> = k(B A, ¢)
0 j=1 i

and

8,(t)

0.0 0.5 1.0 1.5 2.0
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Error analysis (r = 1)

Easy to estimate 37, |0;(t)| and hence show

4 n
" u(t,)| < |U° — L t—t_1)’||AL(2)| dt.
U™ —u(ts)l| < U uoHJrr(lJFV)J-:Zl//j( 1)V [|Ad'(t)]]
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Error analysis (r = 1)

Easy to estimate 37, |0;(t)| and hence show

4 n
U™ —u(t,)|| < [|U° - - t—ti_1)"||Ad(t)] dt.
10"~ u(tn)] < | uou+r(1+y)j:§‘;/0( ) A (1)
Tricky argument involving
t
Aj(t):—/ 0j(s)ds forty <t<t,2<j<n,
0

shows
U™ = u(ty)]| < [|U° — woll + 1<4/ t”||Ad(t)| dt
- r(l + I/) h

n
+ 2k t7 || A (£, +6ij/ t || Au” (¢)|| dt).
=2 7l
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Convergence behaviour (r = 1)

Numer. Algorithms, 52: 69-88, 2009.

Graded mesh: t, = (n/N)YT for 0 < n < N, with v > 1.
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Convergence behaviour (r = 1)

Numer. Algorithms, 52: 69-88, 2009.
Graded mesh: t, = (n/N)YT for 0 < n < N, with v > 1.
If t¥||Ad/(t)|| < Ct°~1, then

U™ = u(t,)|| < |U° — wo|| + Ck” provided v > max(1,v/0).
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Convergence behaviour (r = 1)

Numer. Algorithms, 52: 69-88, 2009.
Graded mesh: t, = (n/N)YT for 0 < n < N, with v > 1.
If t¥||Ad/(t)|| < Ct°~1, then

U™ = u(t,)|| < |U° — wo|| + Ck” provided v > max(1,v/0).

If also t**1||Au”(t)|| < Ct°~1, then

U™ = u(ty)|| < ||U° — ug|| + Ck  provided v > max(1,1/0).
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Convergence behaviour (r = 1)

Numer. Algorithms, 52: 69-88, 2009.
Graded mesh: t, = (n/N)YT for 0 < n < N, with v > 1.
If t¥||Ad/(t)|| < Ct°~1, then

U™ — u(t,)|| < ||U° — wol| + Ck” provided v > max(1,v/0).

If also t**1||Au”(t)|| < Ct°~1, then

U™ = u(ty)|| < ||U° — ug|| + Ck  provided v > max(1,1/0).

Spatial discretization with piecewise-linear finite elements leads to
additional error of order h? log(t1/tn).
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Convergence behaviour for piecewise-linears (r = 2).

Numer. Algorithms, to appear.

Can show

1U = ulls, < U° — uoll + |u — M|, + C// t||Ad'(t)|| dt

1
=Y Ao dr
j=2 j
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Convergence behaviour for piecewise-linears (r = 2).

Numer. Algorithms, to appear.

Can show

0= ull, < 16° = wol| + lu = Nal, + € [ )au(0)] o
., 1
+ Sk [ Au(e)]
; I
Jj=2 J

Gives error of order kX* provided v > (1 + v)/o.
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Convergence behaviour for piecewise-linears (r = 2).

Numer. Algorithms, to appear.

Can show

0= ull, < 16° = wol| + lu = Nal, + € [ )au(0)] o
., 1
+ Sk [ Au(e)]
; I
Jj=2 J

Gives error of order kX* provided v > (1 + v)/o.

In practice, observe O(k?) provided v > 2/0.
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Convergence behaviour for piecewise-linears (r = 2).

Numer. Algorithms, to appear.

Can show

1U = ulls, < U° — uoll + |u — M|, + C// t||Ad'(t)|| dt

1
=Y Ao dr
j=2 j

Gives error of order kX* provided v > (1 + v)/o.
In practice, observe O(k?) provided v > 2/0.

Spatial discretization with piecewise-linear finite elements again
gives additional error of order h? log(t1/tn).
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Convergence behaviour for piecewise-linears (r = 2).

Numer. Algorithms, to appear.

Can show

1U = ully, < [U° = wol| + [lu = Nuly, + C// t’[|Ad'(t)]| dt
., 1
+ Sk [ Au(e)]
j=2 l

Gives error of order kX* provided v > (1 + v)/o.
In practice, observe O(k?) provided v > 2/0.

Spatial discretization with piecewise-linear finite elements again
gives additional error of order h? log(t1/tn).

New paper proves error of order k” for p = min(2, % +v).
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