Discontinuous Galerkin methods for fractional diffusion problems

Bill McLean Kassem Mustapha

School of Maths and Stats, University of NSW KFUPM, Dhahran

Leipzig, 7 October, 2010

Outline

- Sub-diffusion Equation
- Various Numerical Methods
- Discontinuous Galerkin Methods

Part I

Sub-diffusion Equation

Density of particles u = u(x, t) satisfies

$$u_t - \nabla \cdot (K \nabla u) = f(x, t)$$
 for $x \in \Omega$ and $t > 0$,

for a diffusivity K > 0 and source density f.

Density of particles u = u(x, t) satisfies

$$u_t - \nabla \cdot (K \nabla u) = f(x, t)$$
 for $x \in \Omega$ and $t > 0$,

for a diffusivity K > 0 and source density f.

Initial condition $u(x,0) = u_0(x)$ for $x \in \Omega$.

Density of particles u = u(x, t) satisfies

$$u_t - \nabla \cdot (K \nabla u) = f(x, t)$$
 for $x \in \Omega$ and $t > 0$,

for a diffusivity K > 0 and source density f.

Initial condition $u(x,0) = u_0(x)$ for $x \in \Omega$.

Zero-flux boundary condition $\partial u/\partial n = 0$ for $x \in \partial \Omega$.

Density of particles u = u(x, t) satisfies

$$u_t - \nabla \cdot (K \nabla u) = f(x, t)$$
 for $x \in \Omega$ and $t > 0$,

for a diffusivity K > 0 and source density f.

Initial condition $u(x,0) = u_0(x)$ for $x \in \Omega$.

Zero-flux boundary condition $\partial u/\partial n = 0$ for $x \in \partial \Omega$.

Absorbing boundary condition u = 0 for $x \in \partial \Omega$.

Anomalous sub-diffusion

Density satisfies

$$u_t - \nabla \cdot (\omega_{\nu} * K \nabla u)_t = f(x, t)$$
 for $x \in \Omega$ and $t > 0$,

where $0 < \nu < 1$ and

$$\omega_{
u}(t) = \frac{t^{
u-1}}{\Gamma(
u)}.$$

Anomalous sub-diffusion

Density satisfies

$$u_t - \nabla \cdot (\omega_{\nu} * K \nabla u)_t = f(x, t)$$
 for $x \in \Omega$ and $t > 0$,

where $0 < \nu < 1$ and

$$\omega_{\nu}(t) = \frac{t^{\nu-1}}{\Gamma(\nu)}.$$

Riemann–Liouville fractional integral of order ν :

$$\omega_{\nu} * v(t) = \int_0^t \frac{(t-s)^{\nu-1}}{\Gamma(\nu)} v(s) ds.$$

Thus, $(\omega_{\nu} * \nu)_t = "\partial_t^{1-\nu} \nu"$.

Fractional diffusion equation arises from a CTRW model. The mean-square displacement of a particle is proportional to t^{ν} .

Fractional diffusion equation arises from a CTRW model. The mean-square displacement of a particle is proportional to t^{ν} .

Fractional diffusion equation arises from a CTRW model. The mean-square displacement of a particle is proportional to t^{ν} .

$$\omega_{\nu}(t) = t^{\nu-1}/\Gamma(\nu) \to 1,$$

Fractional diffusion equation arises from a CTRW model. The mean-square displacement of a particle is proportional to t^{ν} .

$$\omega_{
u}(t)=t^{
u-1}/\Gamma(
u)
ightarrow 1,$$

$$(\omega_
u* \mathsf{K}
abla u)(t)
ightarrow \int_0^t \mathsf{K}
abla u(x,s) \, ds,$$

Fractional diffusion equation arises from a CTRW model. The mean-square displacement of a particle is proportional to t^{ν} .

$$\omega_{\nu}(t) = t^{\nu-1}/\Gamma(\nu) \rightarrow 1,$$

$$(\omega_{
u} * K \nabla u)(t)
ightarrow \int_0^t K \nabla u(x,s) \, ds,$$

$$(\omega_{\nu} * K \nabla u)_t \to K \nabla u.$$

Write

$$Au = -\nabla \cdot (K\nabla u)$$
 and $\mathcal{B}_{\nu}v(t) = (\omega_{\nu} * v)_t$.

Write

$$Au = -\nabla \cdot (K\nabla u)$$
 and $\mathcal{B}_{\nu}v(t) = (\omega_{\nu} * v)_t$.

Inner product and norm in $L_2(\Omega)$:

$$\langle u,v \rangle = \int_{\Omega} uv \, dx$$
 and $\|u\| = \sqrt{\langle u,u \rangle}$.

Write

$$Au = -
abla \cdot (K
abla u)$$
 and $\mathcal{B}_{
u}v(t) = (\omega_{
u} * v)_t$.

Inner product and norm in $L_2(\Omega)$:

$$\langle u,v \rangle = \int_{\Omega} uv \, dx \quad ext{and} \quad \|u\| = \sqrt{\langle u,u \rangle}.$$

Bilinear form on $H^1(\Omega)$:

$$\mathsf{A}(u,v) = \langle \mathsf{A}u,v\rangle = \int_{\Omega} \mathsf{K} \nabla u \cdot \nabla v \, dx.$$

Write

$$Au = -\nabla \cdot (K\nabla u)$$
 and $\mathcal{B}_{\nu}v(t) = (\omega_{\nu} * v)_t$.

Inner product and norm in $L_2(\Omega)$:

$$\langle u, v \rangle = \int_{\Omega} uv \, dx$$
 and $\|u\| = \sqrt{\langle u, u \rangle}$.

Bilinear form on $H^1(\Omega)$:

$$\mathsf{A}(u,v) = \langle \mathsf{A}u,v\rangle = \int_{\Omega} \mathsf{K} \nabla u \cdot \nabla v \, dx.$$

Weak formulation:

$$\langle u_t, v \rangle + \mathsf{A}(\mathcal{B}_{\nu}u, v) = \langle f, v \rangle \quad \text{for all } v \in H^1(\Omega).$$

Separation of variables

Complete orthonormal eigensystem:

$$A\phi_m = \lambda_m \phi_m \quad ext{for } m = 0, 1, 2, \dots$$
 $\langle \phi_m, \phi_n \rangle = \delta_{mn},$ $0 \le \lambda_0 \le \lambda_1 \le \lambda_2 \le \dots,$ $\lambda_m \to \infty \text{ as } m \to \infty.$

Separation of variables

Complete orthonormal eigensystem:

$$A\phi_m = \lambda_m \phi_m \quad ext{for } m = 0, 1, 2, \dots$$
 $\langle \phi_m, \phi_n \rangle = \delta_{mn},$ $0 \le \lambda_0 \le \lambda_1 \le \lambda_2 \le \dots,$ $\lambda_m \to \infty \text{ as } m \to \infty.$

Fourier modes $u_m(t) = \langle u(t), \phi_m \rangle$ satisfy scalar IVP:

$$u'_m + \lambda_m \mathcal{B}_{\nu} u_m = f_m(t), \quad u_m(0) = u_{0m},$$

where

$$f_m(t) = \langle f(t), \phi_m \rangle, \qquad u_{0m} = \langle u_0, \phi_m \rangle.$$

Laplace transformation

Notation:

$$\hat{v}(z) = \mathcal{L}\{v(t)\} = \int_0^\infty e^{-zt} v(t) dt.$$

Laplace transformation

Notation:

$$\hat{v}(z) = \mathcal{L}\{v(t)\} = \int_0^\infty e^{-zt} v(t) dt.$$

We transform

$$u_m' + \lambda_m \mathcal{B}_{\nu} u_m = f_m(t), \quad u_m(0) = u_{0m},$$

to obtain

$$z\hat{u}_m(z) - u_{0m} + \lambda_m z^{1-\nu} \hat{u}_m(z) = \hat{f}_m(z).$$

Laplace transformation

Notation:

$$\hat{v}(z) = \mathcal{L}\{v(t)\} = \int_0^\infty e^{-zt} v(t) dt.$$

We transform

$$u_m' + \lambda_m \mathcal{B}_{\nu} u_m = f_m(t), \quad u_m(0) = u_{0m},$$

to obtain

$$z\hat{u}_m(z) - u_{0m} + \lambda_m z^{1-\nu}\hat{u}_m(z) = \hat{f}_m(z).$$

Thus,

$$\hat{u}_m(z) = \frac{u_{0m} + \hat{f}_m(z)}{z + \lambda_m z^{1-\nu}}.$$

Explicit solution

Mittag-Leffler function satisfies

$$E_{
u}(-\lambda t^{
u}) = \mathcal{L}^{-1}igg\{rac{1}{z+\lambda z^{1-
u}}igg\} \quad o \quad e^{-\lambda t} = \mathcal{L}^{-1}igg\{rac{1}{z+\lambda}igg\},$$

SO

$$u_m(t) = E_{\nu}(-\lambda_m t^{\nu})u_{0m} + \int_0^t E_{\nu}(-\lambda_m (t-s)^{\nu})f_m(s) ds.$$

Explicit solution

Mittag-Leffler function satisfies

$$E_{
u}(-\lambda t^{
u}) = \mathcal{L}^{-1}igg\{rac{1}{z+\lambda z^{1-
u}}igg\} \quad o \quad e^{-\lambda t} = \mathcal{L}^{-1}igg\{rac{1}{z+\lambda}igg\},$$

SO

$$u_m(t) = E_{\nu}(-\lambda_m t^{\nu})u_{0m} + \int_0^t E_{\nu}(-\lambda_m (t-s)^{\nu})f_m(s) ds.$$

Hence,

$$u(t) = \mathcal{E}(t)u_0 + \int_0^t \mathcal{E}(t-s)f(s) ds$$

where

$$\mathcal{E}(t)v = \sum_{m=0}^{\infty} E_{\nu}(-\lambda_{m}t^{\nu})\langle v, \phi_{m}\rangle\phi_{m}.$$

Positivity

Plancherel Theorem implies

$$\int_0^\infty \mathcal{B}_\nu v(t) v(t) \, dt = \frac{\sin(\frac{1}{2}\pi\nu)}{\pi} \int_0^\infty y^{1-\nu} |\hat{v}(iy)|^2 \, dy \geq 0.$$

Positivity

Plancherel Theorem implies

$$\int_0^\infty \mathcal{B}_\nu v(t)v(t)\,dt = \frac{\sin(\frac{1}{2}\pi\nu)}{\pi}\int_0^\infty y^{1-\nu}|\hat{v}(iy)|^2\,dy \geq 0.$$

So

$$\int_0^T \mathsf{A}(\mathcal{B}_{\nu}u,u)\,dt = \sum_{m=0}^\infty \lambda_m \int_0^T \mathcal{B}_{\nu}u_m(t)u_m(t)\,dt \geq 0.$$

Stability via energy argument

Take v = u in the weak formulation:

$$\langle u', u \rangle + \mathsf{A}(\mathcal{B}_{\nu}u, u) = \langle f, u \rangle.$$

Stability via energy argument

Take v = u in the weak formulation:

$$\langle u', u \rangle + \mathsf{A}(\mathcal{B}_{\nu}u, u) = \langle f, u \rangle.$$

Since

$$\langle u', u \rangle = \frac{1}{2} \frac{d}{dt} ||u||^2,$$

integrating from t = 0 to t = T gives

$$\frac{1}{2}\|u(T)\|^2 - \frac{1}{2}\|u_0\|^2 \le \int_0^T \|f\|\|u\| \, dt.$$

Stability via energy argument

Take v = u in the weak formulation:

$$\langle u', u \rangle + \mathsf{A}(\mathcal{B}_{\nu}u, u) = \langle f, u \rangle.$$

Since

$$\langle u', u \rangle = \frac{1}{2} \frac{d}{dt} ||u||^2,$$

integrating from t = 0 to t = T gives

$$\frac{1}{2}\|u(T)\|^2 - \frac{1}{2}\|u_0\|^2 \le \int_0^T \|f\|\|u\| \, dt.$$

Existence of a unique mild solution follows, with

$$||u(t)|| \le ||u_0|| + 2 \int_0^t ||f(s)|| ds.$$

If $f(t) \equiv 0$ then

$$u(t) = \mathcal{E}(t)u_0 = \sum_{m=0}^{\infty} E_{\nu}(-\lambda_m t^{\nu})\langle u_0, \phi_m \rangle \phi_m.$$

If $f(t) \equiv 0$ then

$$u(t) = \mathcal{E}(t)u_0 = \sum_{m=0}^{\infty} E_{\nu}(-\lambda_m t^{\nu})\langle u_0, \phi_m \rangle \phi_m.$$

The mth mode of u_0 is damped by the factor

$$E_{\nu}(-\lambda_m t^{\nu}) \sim \lambda_m^{-1} t^{-\nu} / \Gamma(1-\nu),$$

If $f(t) \equiv 0$ then

$$u(t) = \mathcal{E}(t)u_0 = \sum_{m=0}^{\infty} E_{\nu}(-\lambda_m t^{\nu})\langle u_0, \phi_m \rangle \phi_m.$$

The mth mode of u_0 is damped by the factor

$$E_{\nu}(-\lambda_m t^{\nu}) \sim \lambda_m^{-1} t^{-\nu} / \Gamma(1-\nu),$$

implying the smoothing property

$$t^{q} \|A^{\mu} u^{(q)}(t)\| \le C t^{-\mu\nu} \|u_0\|, \quad 0 \le \mu \le 1, q = 0, 1, 2, \dots$$

If $f(t) \equiv 0$ then

$$u(t) = \mathcal{E}(t)u_0 = \sum_{m=0}^{\infty} E_{\nu}(-\lambda_m t^{\nu})\langle u_0, \phi_m \rangle \phi_m.$$

The mth mode of u_0 is damped by the factor

$$E_{\nu}(-\lambda_m t^{\nu}) \sim \lambda_m^{-1} t^{-\nu} / \Gamma(1-\nu),$$

implying the smoothing property

$$t^{q} \|A^{\mu} u^{(q)}(t)\| \le C t^{-\mu\nu} \|u_0\|, \quad 0 \le \mu \le 1, q = 0, 1, 2, \dots$$

For classical diffusion, $E_1(-\lambda_m t) = e^{-\lambda_m t}$ leads to stronger smoothing:

$$t^{q} \|A^{\mu} u^{(q)}(t)\| \le C t^{-\mu} \|u_{0}\|, \quad 0 \le \mu < \infty.$$

If
$$u_0 = 0$$
 then

$$u(t) = \int_0^t \mathcal{E}(t-s)f(s)\,ds$$

If $u_0 = 0$ then

$$u(t) = \int_0^t \mathcal{E}(t-s)f(s) \, ds$$

and we can show

$$|t^q||Au^{(q)}(t)|| \leq Ct^{-\nu}\sum_{j=0}^{q+1}\int_0^t s^j||f^{(j)}(s)||ds.$$

Regularity for inhomogenous problem

If $u_0 = 0$ then

$$u(t) = \int_0^t \mathcal{E}(t-s)f(s) \, ds$$

and we can show

$$|t^q||Au^{(q)}(t)|| \leq Ct^{-\nu}\sum_{j=0}^{q+1}\int_0^t s^j||f^{(j)}(s)||ds.$$

Analysis of DG methods uses estimates of the form

$$t^{\nu+q-1}\|Au^{(q)}(t)\| \le Ct^{\sigma-1}$$
 with $\sigma > 0$.

Regularity for inhomogenous problem

If $u_0 = 0$ then

$$u(t) = \int_0^t \mathcal{E}(t-s)f(s) \, ds$$

and we can show

$$|t^q||Au^{(q)}(t)|| \leq Ct^{-\nu}\sum_{j=0}^{q+1}\int_0^t s^j||f^{(j)}(s)||ds.$$

Analysis of DG methods uses estimates of the form

$$t^{\nu+q-1}\|Au^{(q)}(t)\| \le Ct^{\sigma-1} \quad \text{with } \sigma > 0.$$

For instance, $\sigma = \nu/2$ valid if

$$\|A^{1/2}u_0\| < \infty \quad \text{and} \quad t^j \|f^{(j)}(t)\| \le Ct^{\nu/2-1}, \quad 0 \le j \le q+1.$$

Part II

Various Numerical Methods

Implicit finite difference scheme

Langlands and Henry, *J. Comput. Phys.* 205:719–737, 2005.

Consider

$$u_t - (\omega_{\nu} * u_{xx})_t = 0$$
 for $0 \le x \le L$ and $0 \le t \le T$,

with

$$u(x,0) = u_0(x),$$
 $u_x(0,t) = 0 = u_x(L,t).$

Implicit finite difference scheme

Langlands and Henry, *J. Comput. Phys.* 205:719–737, 2005.

Consider

$$u_t - (\omega_{\nu} * u_{xx})_t = 0$$
 for $0 \le x \le L$ and $0 \le t \le T$,

with

$$u(x,0) = u_0(x),$$
 $u_x(0,t) = 0 = u_x(L,t).$

For step sizes $\Delta x = L/P$ and $\Delta t = T/N$, seek

$$U_p^n \approx u(x_p, t_n)$$
 for $(x_p, t_n) = (p\Delta x, n\Delta t)$,

where $0 \le p \le P$ and $0 \le n \le N$.

Approximations

A formula of Oldham and Spanier gives

$$(\omega_{
u}*v)_{t}pprox rac{\Delta t^{
u-1}}{\Gamma(1+
u)}igg(rac{
u V_{p}^{0}}{n^{1-
u}} + \sum_{j=1}^{n} (V_{p}^{j} - V_{p}^{j-1})ig[(n-j+1)^{
u} - (n-j)^{
u}ig]igg)$$
 at $(x,t) = (x_{p},t_{p})$.

Approximations

A formula of Oldham and Spanier gives

$$(\omega_{\nu}*v)_{t} \approx \frac{\Delta t^{\nu-1}}{\Gamma(1+\nu)} \left(\frac{\nu V_{p}^{0}}{n^{1-\nu}} + \sum_{j=1}^{n} (V_{p}^{j} - V_{p}^{j-1}) [(n-j+1)^{\nu} - (n-j)^{\nu}] \right)$$

at
$$(x, t) = (x_p, t_n)$$
.

Combine with

$$\begin{split} u_t &\approx \frac{U_p^n - U_p^{n-1}}{\Delta t} \\ u_x &\approx \frac{U_{p+1}^n - U_{p-1}^n}{2\Delta x}, \\ u_{xx} &\approx \frac{U_{p+1}^n - 2U_p^n + U_{p-1}^n}{\Delta x^2}, \end{split}$$

Final scheme

Write

$$w_j = (j+1)^{\nu} - j^{\nu}$$
 and $\delta^2 U_p^n = \frac{U_{p+1}^n - 2U_p^n + U_{p-1}^n}{\Delta x^2}$,

then

$$\frac{U_p^n - U_p^{n-1}}{\Delta t} = \frac{\Delta t^{\nu-1}}{\Gamma(1+\nu)} \left(\nu n^{\nu-1} \delta^2 U_p^0 + \sum_{j=1}^n w_{n-j} (\delta^2 U_p^j - \delta^2 U_p^{j-1}) \right)$$
for $1 \le n \le N$ and $0 \le p \le P$,

Final scheme

Write

$$w_j = (j+1)^{\nu} - j^{\nu}$$
 and $\delta^2 U_p^n = \frac{U_{p+1}^n - 2U_p^n + U_{p-1}^n}{\Delta x^2},$

then

$$\begin{split} \frac{U_p^n - U_p^{n-1}}{\Delta t} &= \frac{\Delta t^{\nu-1}}{\Gamma(1+\nu)} \bigg(\nu n^{\nu-1} \delta^2 U_p^0 + \sum_{j=1}^n w_{n-j} (\delta^2 U_p^j - \delta^2 U_p^{j-1}) \bigg) \\ & \qquad \qquad \text{for } 1 \leq n \leq N \text{ and } 0 \leq p \leq P, \end{split}$$

with

$$U_{-1}^n = U_1^n$$
 and $U_{P+1}^n = U_{P-1}^n$.

Final scheme

Write

$$w_j = (j+1)^{\nu} - j^{\nu}$$
 and $\delta^2 U_p^n = \frac{U_{p+1}^n - 2U_p^n + U_{p-1}^n}{\Delta x^2}$,

then

$$\begin{split} \frac{U_p^n - U_p^{n-1}}{\Delta t} &= \frac{\Delta t^{\nu-1}}{\Gamma(1+\nu)} \bigg(\nu n^{\nu-1} \delta^2 U_p^0 + \sum_{j=1}^n w_{n-j} (\delta^2 U_p^j - \delta^2 U_p^{j-1}) \bigg) \\ & \qquad \qquad \text{for } 1 \leq n \leq N \text{ and } 0 \leq p \leq P, \end{split}$$

with

$$U_{-1}^n = U_1^n$$
 and $U_{P+1}^n = U_{P-1}^n$.

Scheme is implicit: put $a=w_0\Delta t^{
u}/\Gamma(1+\nu)$ then

$$U_p^n-a\delta^2U_p^n=U_p^{n-1}+({
m terms\ in}\ \delta^2U_p^0,\ \ldots,\ \delta^2U_p^{n-1}).$$

Convergence behaviour

Scheme is unconditionally stable, and computational experiments indicate that

$$U_p^n = u(x_p, t_n) + O(\Delta t^{\nu} + \Delta x^2).$$

Convergence behaviour

Scheme is unconditionally stable, and computational experiments indicate that

$$U_p^n = u(x_p, t_n) + O(\Delta t^{\nu} + \Delta x^2).$$

As u o 1 we have $w_j = (j+1)^{\nu} - j^{\nu} o 1$ so

$$\frac{\Delta t^{\nu-1}}{\Gamma(1+\nu)} \left(\nu n^{\nu-1} \delta^2 U_p^0 + \sum_{j=1}^n w_{n-j} (\delta^2 U_p^j - \delta^2 U_p^{j-1}) \right) \to \delta^2 U_p^n,$$

and we recover the implicit Euler scheme for classical diffusion:

$$\frac{U_p^n - U_p^{n-1}}{\Delta t} = \delta^2 U_p^n.$$

Convolution quadrature

Lubich, Numer. Math. 52: 129-145, 1988.

Seek weights ϕ_i such that

$$(f*g)(t_n) \approx \sum_{j=0}^n \phi_{n-j}g(t_j).$$

Convolution quadrature

Lubich, Numer. Math. 52: 129-145, 1988.

Seek weights ϕ_i such that

$$(f*g)(t_n) \approx \sum_{j=0}^n \phi_{n-j}g(t_j).$$

Laplace inversion formula gives

$$(f * g)(t) = \int_0^t \underbrace{\frac{1}{2\pi i} \int_{\Gamma} e^{z(t-s)} \hat{f}(z) dz}_{f(t-s)} g(s) ds$$
$$= \frac{1}{2\pi i} \int_{\Gamma} \hat{f}(z) \int_0^t e^{z(t-s)} g(s) ds dz.$$

Auxiliary ODE

Put

$$y(t;z) = \int_0^t e^{z(t-s)}g(s) ds$$

so that

$$(f*g)(t) = \frac{1}{2\pi i} \int_{\Gamma} \hat{f}(z) y(t;z) dz.$$

Auxiliary ODE

Put

$$y(t;z) = \int_0^t e^{z(t-s)}g(s) ds$$

so that

$$(f*g)(t) = \frac{1}{2\pi i} \int_{\Gamma} \hat{f}(z) y(t;z) dz.$$

Since y'=zy+g and y(0)=0, we have $y(t_n;z)\approx Y^n(z)$ where

$$\frac{Y^n-Y^{n-1}}{\Delta t}=zY^n+g(t_n),\quad Y^0=0,$$

Auxiliary ODE

Put

$$y(t;z) = \int_0^t e^{z(t-s)}g(s) ds$$

so that

$$(f*g)(t) = \frac{1}{2\pi i} \int_{\Gamma} \hat{f}(z) y(t;z) dz.$$

Since y' = zy + g and y(0) = 0, we have $y(t_n; z) \approx Y^n(z)$ where

$$\frac{Y^n-Y^{n-1}}{\Delta t}=zY^n+g(t_n), \quad Y^0=0,$$

so

$$(f*g)(t_n) \approx \frac{1}{2\pi i} \int_{\Gamma} \hat{f}(z) Y^n dz.$$

Generating functions

Write

$$\tilde{Y}(\zeta) = \sum_{n=0}^{\infty} Y^n \zeta^n,$$

then

$$\frac{\delta(\zeta)}{\Delta t}\, \tilde{Y}(\zeta) = z\, \tilde{Y}(\zeta) + \tilde{g}(\zeta), \quad \delta(\zeta) = 1 - \zeta,$$

Generating functions

Write

$$\tilde{Y}(\zeta) = \sum_{n=0}^{\infty} Y^n \zeta^n,$$

then

$$rac{\delta(\zeta)}{\Delta t}\, ilde{Y}(\zeta) = z ilde{Y}(\zeta) + ilde{g}(\zeta), \quad \delta(\zeta) = 1 - \zeta,$$

SO

$$\tilde{Y}(\zeta) = (\delta(\zeta) \Delta t^{-1} - z)^{-1} \tilde{g}(\zeta),$$

Generating functions

Write

$$\tilde{Y}(\zeta) = \sum_{n=0}^{\infty} Y^n \zeta^n,$$

then

$$\frac{\delta(\zeta)}{\Delta t}\,\tilde{Y}(\zeta)=z\tilde{Y}(\zeta)+\tilde{g}(\zeta),\quad \delta(\zeta)=1-\zeta,$$

SO

$$\tilde{Y}(\zeta) = (\delta(\zeta) \Delta t^{-1} - z)^{-1} \tilde{g}(\zeta),$$

and by Cauchy's theorem,

$$\widetilde{f*g}(\zeta) \approx \frac{1}{2\pi i} \int_{\Gamma} \hat{f}(z) \widetilde{Y}(\zeta) dz = \hat{f}(\delta(\zeta) \Delta t^{-1}) \widetilde{g}(\zeta).$$

Definition of weights

Compute ϕ_0 , ϕ_1 , ... so that

$$\hat{f}(\delta(\zeta)/\Delta t) = \sum_{n=0}^{\infty} \phi_n \zeta^n = \tilde{\phi}(\zeta)$$

Definition of weights

Compute ϕ_0 , ϕ_1 , ... so that

$$\hat{f}(\delta(\zeta)/\Delta t) = \sum_{n=0}^{\infty} \phi_n \zeta^n = \tilde{\phi}(\zeta)$$

then

$$\widetilde{f * g}(\zeta) \approx \widetilde{\phi}(\zeta)\widetilde{g}(\zeta)$$

Definition of weights

Compute ϕ_0, ϕ_1, \ldots so that

$$\hat{f}(\delta(\zeta)/\Delta t) = \sum_{n=0}^{\infty} \phi_n \zeta^n = \tilde{\phi}(\zeta)$$

then

$$\widetilde{f * g}(\zeta) \approx \widetilde{\phi}(\zeta)\widetilde{g}(\zeta)$$

and so

$$(f*g)(t_n) \approx \sum_{j=0}^n \phi_{n-j}g(t_j).$$

Explicit finite difference scheme

Yuste and Acedo, SIAM J. Numer. Anal. 42: 1862–1874, 2005.

Consider

$$u_t - K(\omega_{\nu} * u_{xx})_t = 0$$
 and $u(-L, t) = 0 = u(L, t)$.

Explicit finite difference scheme

Yuste and Acedo, SIAM J. Numer. Anal. 42: 1862–1874, 2005.

Consider

$$u_t - K(\omega_{\nu} * u_{xx})_t = 0$$
 and $u(-L, t) = 0 = u(L, t)$.

Since $\mathcal{L}\{(\omega_{\nu}*v)_t\}=z^{1-\nu}\hat{v}(z)$ we have

$$(\omega_{\nu}*v)_tpprox \Delta t^{\nu-1}\sum_{j=0}^n\omega_{n-j}V_p^j$$
 at $(x,t)=(x_p,t_n)$,

where

$$\sum_{j=0}^{\infty} \omega_j \zeta^j = (1-\zeta)^{1-\nu}.$$

Forward difference in time

Finite difference approximations

$$u_t pprox rac{U_p^{n+1} - U_p^n}{\Delta t}$$
 and $u_{xx} pprox \delta^2 U_p^n = rac{U_{p+1}^n - 2U_p^n + U_{p-1}^n}{\Delta x^2}$

lead to the scheme

$$\frac{U_p^{n+1} - U_p^n}{\Delta t} = K \Delta t^{\nu-1} \sum_{j=0}^n \omega_{n-j} \delta^2 U_p^j.$$

Forward difference in time

Finite difference approximations

$$u_t pprox rac{U_p^{n+1} - U_p^n}{\Delta t}$$
 and $u_{xx} pprox \delta^2 U_p^n = rac{U_{p+1}^n - 2U_p^n + U_{p-1}^n}{\Delta x^2}$

lead to the scheme

$$\frac{U_p^{n+1} - U_p^n}{\Delta t} = K \Delta t^{\nu-1} \sum_{j=0}^n \omega_{n-j} \delta^2 U_p^j.$$

If $\nu \to 1$ then $\omega_j \to 0$ for $j \ge 1$ and we recover the explicit Euler scheme for classical diffusion:

$$\frac{U_p^{n+1} - U_p^n}{\Delta t} = K\delta^2 U_p^n.$$

Convergence behaviour

Von-Neumann stability condition:

$$K\,\frac{\Delta t^{\nu}}{\Delta x^2} \leq \frac{1}{2^{2-\nu}}.$$

Convergence behaviour

Von-Neumann stability condition:

$$K\frac{\Delta t^{\nu}}{\Delta x^2} \leq \frac{1}{2^{2-\nu}}.$$

Formally, error is $O(\Delta t + \Delta x^2)$, but in practice

Implicit convolution quadrature scheme

Cuesta, Lubich and Palencia, Math. Comp., 75: 673-696, 2006.

Work with integrated equation

$$u + \omega_{\nu} * Au = u_0 + F(t),$$

where $F(t) = \int_0^t f(s) ds$.

Implicit convolution quadrature scheme

Cuesta, Lubich and Palencia, Math. Comp., 75: 673-696, 2006.

Work with integrated equation

$$u + \omega_{\nu} * Au = u_0 + F(t),$$

where $F(t) = \int_0^t f(s) ds$.

Compute weights ϕ_n satisfying

$$\sum_{n=0}^{\infty} \phi_n \zeta^n = \hat{\omega}_{\nu} \left(\delta(\zeta) / \Delta t \right) = \left(\frac{\delta(\zeta)}{\Delta t} \right)^{-\nu},$$

so that

$$\omega_{\nu} * \mathbf{v} \approx \sum_{j=0}^{n} \phi_{n-j} V^{j}.$$

Convergence behaviour

Rearrange equation as

$$(I + \omega_{\nu} * A)(u - u_0) = -\omega_{1+\nu}(t)Au_0 + F(t),$$

and discretize:

$$U^{n}-u_{0}+\sum_{j=0}^{n}\phi_{n-j}A(U^{j}-u_{0})=-\omega_{1+\nu}(t_{n})Au_{0}+F(t_{n}).$$

Convergence behaviour

Rearrange equation as

$$(I + \omega_{\nu} * A)(u - u_0) = -\omega_{1+\nu}(t)Au_0 + F(t),$$

and discretize:

$$U^{n}-u_{0}+\sum_{j=0}^{n}\phi_{n-j}A(U^{j}-u_{0})=-\omega_{1+\nu}(t_{n})Au_{0}+F(t_{n}).$$

Error analysis shows

$$||U^{n} - u(t_{n})|| \leq C\Delta t^{1+\nu} \frac{||A^{\rho}u_{0}||}{t_{n}^{1+\nu(1-\rho)}} + C\Delta t^{2} \left(\frac{||A^{\sigma}f(0)||}{t_{n}^{1-\nu\sigma}} + ||f'(0)|| + \int_{0}^{t_{n}} ||f''(s)|| ds \right)$$

for $0 \le \rho \le 2$ and $0 \le \sigma \le 1$.

Laplace transforms and quadrature

McLean and Thomée, *J. Integral Equations Appl.*, 22: 57–94, 2010.

We consider

$$u_t + (\omega_{\nu} * Au)_t = f(t).$$

Laplace transforms and quadrature

McLean and Thomée, *J. Integral Equations Appl.*, 22: 57–94, 2010.

We consider

$$u_t + (\omega_{\nu} * Au)_t = f(t).$$

Take Laplace transforms to obtain

$$z\hat{u}(z)-u_0+z^{1-\nu}A\hat{u}(z)=\hat{f}(z),$$

Laplace transforms and quadrature

McLean and Thomée, *J. Integral Equations Appl.*, 22: 57–94, 2010.

We consider

$$u_t + (\omega_{\nu} * Au)_t = f(t).$$

Take Laplace transforms to obtain

$$z\hat{u}(z) - u_0 + z^{1-\nu}A\hat{u}(z) = \hat{f}(z),$$

or

$$(zI + z^{1-\nu}A)\hat{u}(z) = u_0 + \hat{f}(z).$$

Laplace transforms and quadrature

McLean and Thomée, *J. Integral Equations Appl.*, 22: 57–94, 2010.

We consider

$$u_t + (\omega_{\nu} * Au)_t = f(t).$$

Take Laplace transforms to obtain

$$z\hat{u}(z)-u_0+z^{1-\nu}A\hat{u}(z)=\hat{f}(z),$$

or

$$(zI + z^{1-\nu}A)\hat{u}(z) = u_0 + \hat{f}(z).$$

Thus, we can find $\hat{u}(z)$ by solving an elliptic boundary value problem with complex coefficients.

Spectrum of A lies in $[0,\infty)$ so for each $\varphi>0$,

$$\|(\lambda I - A)^{-1}\| \le \frac{C_{\varphi}}{|\lambda|} \quad \text{for} \quad |\arg \lambda| \ge \varphi.$$

Spectrum of A lies in $[0, \infty)$ so for each $\varphi > 0$,

$$\|(\lambda I - A)^{-1}\| \le \frac{C_{\varphi}}{|\lambda|} \quad \text{for} \quad |\arg \lambda| \ge \varphi.$$

Thus,

$$\|(zI+A)^{-1}\| \leq \frac{C_{\varphi}}{|z|}$$
 for $|\arg z| \leq \pi - \varphi$.

Spectrum of A lies in $[0, \infty)$ so for each $\varphi > 0$,

$$\|(\lambda I - A)^{-1}\| \le \frac{C_{\varphi}}{|\lambda|} \quad \text{for} \quad |\arg \lambda| \ge \varphi.$$

Thus,

$$\|(zI+A)^{-1}\| \leq \frac{C_{\varphi}}{|z|}$$
 for $|\arg z| \leq \pi - \varphi$.

We have

$$(zI + z^{1-\nu}A)\hat{u}(z) = u_0 + \hat{f}(z),$$

so

$$(z^{\nu}I + A)\hat{u}(z) = z^{\nu-1}[u_0 + \hat{f}(z)],$$

Spectrum of A lies in $[0, \infty)$ so for each $\varphi > 0$,

$$\|(\lambda I - A)^{-1}\| \le \frac{C_{\varphi}}{|\lambda|} \quad \text{for} \quad |\arg \lambda| \ge \varphi.$$

Thus,

$$\|(zI+A)^{-1}\| \leq \frac{C_{\varphi}}{|z|} \quad \text{for} \quad |\arg z| \leq \pi - \varphi.$$

We have

$$(zI + z^{1-\nu}A)\hat{u}(z) = u_0 + \hat{f}(z),$$

so

$$(z^{\nu}I + A)\hat{u}(z) = z^{\nu-1}[u_0 + \hat{f}(z)],$$

which is solvable with

$$\|\hat{u}(z)\| \le C_{\varphi} \frac{\|u_0 + \hat{f}(z)\|}{|z|} \quad \text{for} \quad |\arg z| \le \frac{\pi - \varphi}{\nu}.$$

Integral representation

Laplace inversion formula:

$$u(t) = \frac{1}{2\pi i} \int_{\Gamma} e^{zt} \hat{u}(z) dz.$$

Integral representation

Laplace inversion formula:

$$u(t) = \frac{1}{2\pi i} \int_{\Gamma} e^{zt} \hat{u}(z) dz.$$

Deform contour Γ to the curve with parametric representation

$$z(\xi) = a + b(1 - \sin(\delta - i\xi)), \qquad -\infty < \xi < \infty,$$

which is the left branch of a hyperbola with asymptotes $y = \pm (x - a - b) \cot \delta$.

Integral representation

Laplace inversion formula:

$$u(t) = \frac{1}{2\pi i} \int_{\Gamma} e^{zt} \hat{u}(z) dz.$$

Deform contour Γ to the curve with parametric representation

$$z(\xi) = a + b(1 - \sin(\delta - i\xi)), \quad -\infty < \xi < \infty,$$

which is the left branch of a hyperbola with asymptotes $y = \pm (x - a - b) \cot \delta$.

Must assume $\hat{f}(z)$ is analytic to the right of Γ .

Quadrature

We have

$$u(t) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} e^{z(\xi)t} \hat{u}(z(\xi)) z'(\xi) d\xi.$$

Quadrature

We have

$$u(t) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} e^{z(\xi)t} \hat{u}(z(\xi)) z'(\xi) d\xi.$$

Integrand exhibits a double-exponential decay as $|\xi| \to \infty$, since

$$|e^{z(\xi)t}| = e^{at}e^{bt(1-\sin\delta\cosh\xi)}.$$

Quadrature

We have

$$u(t) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} e^{z(\xi)t} \hat{u}(z(\xi)) z'(\xi) d\xi.$$

Integrand exhibits a double-exponential decay as $|\xi| \to \infty$, since

$$|e^{z(\xi)t}| = e^{at}e^{bt(1-\sin\delta\cosh\xi)}.$$

Choose a quadrature step k > 0, then

$$u(t) \approx U_N(t) = \frac{k}{2\pi i} \sum_{j=-N}^{N} e^{z_j t} \hat{u}(z_j) z_j',$$

where

$$z_j = z(\xi_j),$$
 $z'_i = z'(\xi_j),$ $\xi_j = jk.$

Given N and a time scale T, can choose a, b, δ so that,

$$\|\mathit{U}_{N}(t) - \mathit{u}(t)\| \leq \mathit{Ce}^{-\mu N} ig(\|\mathit{u}_{0}\| + \max \|\hat{f}(z)\|ig) \quad ext{for } T \leq t \leq 2\mathit{T},$$

where $\mu > 0$ and the max is over z in a certain set including Γ .

Given N and a time scale T, can choose a, b, δ so that,

$$\|\mathit{U}_{N}(t) - \mathit{u}(t)\| \leq \mathit{Ce}^{-\mu N} ig(\|\mathit{u}_{0}\| + \max \|\widehat{f}(z)\|ig) \quad ext{for } T \leq t \leq 2\mathit{T},$$

where $\mu > 0$ and the max is over z in a certain set including Γ .

We have to solve 2N + 1 elliptic problems to find the $\hat{u}(z_j)$.

Given N and a time scale T, can choose a, b, δ so that,

$$\|\mathit{U}_{N}(t) - \mathit{u}(t)\| \leq \mathit{Ce}^{-\mu N} \big(\|\mathit{u}_{0}\| + \max \|\hat{f}(z)\| \big) \quad \text{for } T \leq t \leq 2T,$$

where $\mu > 0$ and the max is over z in a certain set including Γ .

We have to solve 2N + 1 elliptic problems to find the $\hat{u}(z_j)$.

The elliptic problems can be solved in parallel.

Given N and a time scale T, can choose a, b, δ so that,

$$\|\mathit{U}_{N}(t) - \mathit{u}(t)\| \leq \mathit{Ce}^{-\mu N} \big(\|\mathit{u}_{0}\| + \max \|\hat{f}(z)\| \big) \quad \text{for } T \leq t \leq 2T,$$

where $\mu > 0$ and the max is over z in a certain set including Γ .

We have to solve 2N + 1 elliptic problems to find the $\hat{u}(z_j)$.

The elliptic problems can be solved in parallel.

A variation on the method avoids using $\hat{f}(z)$ and achieves accuracy $O(e^{-\mu\sqrt{N}})$. The elliptic problems take the form

$$(z^{\nu}I + A)w(z,t) = z^{\nu-1}\bigg(e^{zt}u_0 + \int_0^t e^{z(t-s)}f(s)\,ds\bigg).$$

Part III

Discontinuous Galerkin Methods

Nonuniform grid: $0 = t_0 < t_1 < t_2 < \cdots < t_N = T$ with $k_n = t_n - t_{n-1}$ and $k = \max_{1 \le n \le N} k_n$.

Nonuniform grid: $0 = t_0 < t_1 < t_2 < \cdots < t_N = T$ with $k_n = t_n - t_{n-1}$ and $k = \max_{1 \le n \le N} k_n$.

For each half-open interval $I_n = (t_{n-1}, t_n]$ we choose a subspace $S_n \subseteq D(A^{1/2}) \subseteq H^1(\Omega)$.

Nonuniform grid: $0 = t_0 < t_1 < t_2 < \cdots < t_N = T$ with $k_n = t_n - t_{n-1}$ and $k = \max_{1 \le n \le N} k_n$.

For each half-open interval $I_n = (t_{n-1}, t_n]$ we choose a subspace $S_n \subseteq D(A^{1/2}) \subseteq H^1(\Omega)$.

Let W_r denote the space of piecewise polynomial functions V of order r:

$$V(t) = \sum_{p=1}^r a_p t^{p-1}$$
 for $t \in I_n$, with $a_p \in S_n$.

Nonuniform grid: $0 = t_0 < t_1 < t_2 < \cdots < t_N = T$ with $k_n = t_n - t_{n-1}$ and $k = \max_{1 \le n \le N} k_n$.

For each half-open interval $I_n = (t_{n-1}, t_n]$ we choose a subspace $S_n \subseteq D(A^{1/2}) \subseteq H^1(\Omega)$.

Let W_r denote the space of piecewise polynomial functions V of order r:

$$V(t) = \sum_{p=1}^r a_p t^{p-1}$$
 for $t \in I_n$, with $a_p \in S_n$.

Since V may be discontinuous at t_n , write

$$V^n = V(t_n) = V(t_n^-), \qquad V_+^n = V(t_n^+), \qquad [V]^n = V_+^n - V^n.$$

Fractional derivative of a discontinuous function

Integration by parts shows that for $t \in I_n$,

$$\mathcal{B}_
u V(t) = \omega_
u(t) V_+^0 + \sum_{j=1}^{n-1} \omega_
u(t-t_j) [V]^j + ext{continuous terms}.$$

Thus, $\mathcal{B}_{\nu}V(t)$ is left-continuous at $t=t_n$ but behaves like $(t-t_{n-1})^{\nu-1}$ as $t\to t_{n-1}^+$.

Weak formulation

Exact solution satisfies

$$\int_{I_n} [\langle u', v \rangle + \mathsf{A}(\mathcal{B}_{\nu}u, v)] dt = \int_{I_n} \langle f, v \rangle dt$$

for any continuous test function $v : [t_{n-1}, t_n] \to D(A^{1/2})$.

Weak formulation

Exact solution satisfies

$$\int_{I_n} \left[\langle u', v \rangle + \mathsf{A}(\mathcal{B}_{\nu} u, v) \right] dt = \int_{I_n} \langle f, v \rangle dt$$

for any continuous test function $v : [t_{n-1}, t_n] \to D(A^{1/2})$.

Discontinuous Galerkin (DG) solution $U \in \mathcal{W}_r$ defined by

$$\langle U_{+}^{n-1}, V_{+}^{n-1} \rangle + \int_{I_{n}} \left[\langle U', V \rangle + \mathsf{A}(\mathcal{B}_{\nu}U, V) \right] dt$$

$$= \langle U^{n-1}, V_{+}^{n-1} \rangle + \int_{I_{n}} \langle f, V \rangle dt$$

for every test function $V \in \mathcal{W}_r$, with $U^0 \approx u_0$.

Piecewise-constant case (implicit Euler)

When r = 1, we have $U(t) = U^n$ for $t \in I_n$, and the DG method reduces to

$$\langle U^n, \chi \rangle + k_n \mathsf{A}(\bar{\mathcal{B}}^n_{\nu} U, \chi) = \langle U^{n-1}, \chi \rangle + k_n \langle \bar{f}^n, \chi \rangle$$

for all $\chi \in S_n$, where

$$\bar{\mathcal{B}}_{\nu}^{n} = rac{1}{k_{n}} \int_{I_{n}} \mathcal{B}_{\nu} U \, dt$$
 and $\bar{f}^{n} = rac{1}{k_{n}} \int_{I_{n}} f \, dt$.

Piecewise-constant case (implicit Euler)

When r = 1, we have $U(t) = U^n$ for $t \in I_n$, and the DG method reduces to

$$\langle U^n, \chi \rangle + k_n \mathsf{A}(\bar{\mathcal{B}}^n_{\nu} U, \chi) = \langle U^{n-1}, \chi \rangle + k_n \langle \bar{f}^n, \chi \rangle$$

for all $\chi \in S_n$, where

$$\bar{\mathcal{B}}_{\nu}^{n} = \frac{1}{k_{n}} \int_{I_{n}} \mathcal{B}_{\nu} U dt$$
 and $\bar{f}^{n} = \frac{1}{k_{n}} \int_{I_{n}} f dt$.

In other words,

$$\left\langle \frac{U^n - U^{n-1}}{k_n}, \chi \right\rangle + \mathsf{A}(\bar{\mathcal{B}}^n_{\nu}U, \chi) = \langle \bar{f}^n, \chi \rangle.$$

Discrete fractional derivative

We find

$$\bar{\mathcal{B}}_{\nu}^{n}V = k_{n}^{-1} \left(\beta_{nn}V^{n} - \sum_{j=1}^{n-1} \beta_{nj}V^{j} \right)$$

where

$$eta_{nn} = \int_{I_n} \omega_{\nu}(t_n - s) \, ds = \omega_{1+\nu}(k_n) = k_n^{\nu} / \Gamma(1+\nu) > 0,$$

$$\beta_{nj} = \int_{I_j} \left[\omega_{\nu}(t_{n-1} - s) - \omega_{\nu}(t_n - s) \right] \, ds > 0, \quad 1 \le j \le n - 1.$$

Discrete fractional derivative

We find

$$\bar{\mathcal{B}}_{\nu}^{n}V = k_{n}^{-1} \left(\beta_{nn}V^{n} - \sum_{j=1}^{n-1} \beta_{nj}V^{j} \right)$$

where

$$\beta_{nn} = \int_{I_n} \omega_{\nu}(t_n - s) \, ds = \omega_{1+\nu}(k_n) = k_n^{\nu} / \Gamma(1+\nu) > 0,$$

$$\beta_{nj} = \int_{I_j} \left[\omega_{\nu}(t_{n-1} - s) - \omega_{\nu}(t_n - s) \right] \, ds > 0, \quad 1 \le j \le n - 1.$$

Thus,

$$\langle U^n, \chi \rangle + \beta_{nn} \mathsf{A}(U^n, \chi) = \langle U^{n-1} + k_n \overline{f}^n, \chi \rangle + \sum_{i=1}^{n-1} \beta_{ni} \mathsf{A}(U^i, \chi).$$

Discrete fractional derivative

We find

$$\bar{\mathcal{B}}_{\nu}^{n}V = k_{n}^{-1} \left(\beta_{nn}V^{n} - \sum_{j=1}^{n-1} \beta_{nj}V^{j} \right)$$

where

$$\beta_{nn} = \int_{I_n} \omega_{\nu}(t_n - s) \, ds = \omega_{1+\nu}(k_n) = k_n^{\nu} / \Gamma(1+\nu) > 0,$$

$$\beta_{nj} = \int_{I_j} \left[\omega_{\nu}(t_{n-1} - s) - \omega_{\nu}(t_n - s) \right] \, ds > 0, \quad 1 \le j \le n - 1.$$

Thus,

$$\langle U^n, \chi \rangle + \beta_{nn} \mathsf{A}(U^n, \chi) = \langle U^{n-1} + k_n \overline{f}^n, \chi \rangle + \sum_{j=1}^{n-1} \beta_{nj} \mathsf{A}(U^j, \chi).$$

If $u \to 1$ then $eta_{nn} \to k_n$ and $eta_{ni} \to 0$.

Stability via energy argument

Taking V=U and using $\langle U',U\rangle=\frac{1}{2}(d/dt)\|U\|^2$ we find

$$\frac{1}{2} (\|U^{j}\|^{2} + \|U_{+}^{j-1}\|^{2}) + \int_{I_{j}} \mathsf{A}(\mathcal{B}_{\nu}U, U) dt$$

$$= \langle U^{j-1}, U_{+}^{j-1} \rangle + \int_{I_{i}} \langle f, U \rangle dt.$$

Stability via energy argument

Taking V=U and using $\langle U',U\rangle=\frac{1}{2}(d/dt)\|U\|^2$ we find

$$\frac{1}{2} (\|U^{j}\|^{2} + \|U_{+}^{j-1}\|^{2}) + \int_{I_{j}} \mathsf{A}(\mathcal{B}_{\nu}U, U) dt$$

$$= \langle U^{j-1}, U_{+}^{j-1} \rangle + \int_{I_{i}} \langle f, U \rangle dt.$$

Summing over j and using positivity we find

$$||U^n||^2 + ||U_+^0||^2 + \sum_{j=1}^{n-1} ||[U]^j||^2 \le 2\Big(\langle U^0, U_+^0 \rangle + \int_0^{t_n} \langle f, U \rangle dt\Big),$$

Stability via energy argument

Taking V=U and using $\langle U',U\rangle=\frac{1}{2}(d/dt)\|U\|^2$ we find

$$\frac{1}{2} (\|U^{j}\|^{2} + \|U_{+}^{j-1}\|^{2}) + \int_{I_{j}} \mathsf{A}(\mathcal{B}_{\nu}U, U) dt$$

$$= \langle U^{j-1}, U_{+}^{j-1} \rangle + \int_{I_{i}} \langle f, U \rangle dt.$$

Summing over j and using positivity we find

$$||U^n||^2 + ||U_+^0||^2 + \sum_{j=1}^{n-1} ||[U]^j||^2 \le 2\Big(\langle U^0, U_+^0 \rangle + \int_0^{t_n} \langle f, U \rangle dt\Big),$$

and then

$$||U^n|| \le C_r \Big(||U^0|| + \int_0^{t_n} ||f|| \, dt \Big).$$

Projection operator

Define Πu on I_j to be the unique polynomial of order r satisfying

$$\Pi u(t_j) = u(t_j)$$

and

$$\int_{I_j} [u(t) - \Pi u(t)] t^{p-1} dt = 0 \quad \text{for } p = 1, 2, \dots, r-1.$$

Projection operator

Define Πu on I_j to be the unique polynomial of order r satisfying

$$\Pi u(t_j) = u(t_j)$$

and

$$\int_{I_j} [u(t) - \Pi u(t)] t^{p-1} dt = 0 \quad \text{for } p = 1, 2, \dots, r-1.$$

If r = 2 then

$$\Pi u(t) = u(t_n) + \frac{u(t_n) - \overline{u}^n}{k_n/2} (t - t_n)$$
 for $t \in I_n$,

where $\bar{u}^n = k_n^{-1} \int_{I_n} u(t) dt$.

Error from the time discretization

Suppose $S_n = L_2(\Omega)$, so there is no space discretization.

Error from the time discretization

Suppose $S_n = L_2(\Omega)$, so there is no space discretization.

Write $||v||_J = \sup_{t \in J} ||v(t)||$ and $J_n = (0, t_n]$.

Error from the time discretization

Suppose $S_n = L_2(\Omega)$, so there is no space discretization.

Write $||v||_J = \sup_{t \in J} ||v(t)||$ and $J_n = (0, t_n]$.

Optimal approximation:

$$||u - \Pi u||_{I_n} \le C_r k_n^{q-1} \int_{I_n} ||u^{(q)}(t)|| dt$$
 for $q = 1, 2, ..., r$.

Error from the time discretization

Suppose $S_n = L_2(\Omega)$, so there is no space discretization.

Write $||v||_J = \sup_{t \in J} ||v(t)||$ and $J_n = (0, t_n]$.

Optimal approximation:

$$||u - \Pi u||_{I_n} \le C_r k_n^{q-1} \int_{I_n} ||u^{(q)}(t)|| dt$$
 for $q = 1, 2, ..., r$.

Split the DG error into

$$U-u=\theta+\eta$$
 where $\theta=U-\Pi u\in \mathcal{W}_r$ and $\eta=\Pi u-u.$

Error from the time discretization

Suppose $S_n = L_2(\Omega)$, so there is no space discretization.

Write $||v||_J = \sup_{t \in J} ||v(t)||$ and $J_n = (0, t_n]$.

Optimal approximation:

$$||u - \Pi u||_{I_n} \le C_r k_n^{q-1} \int_{I_n} ||u^{(q)}(t)|| dt$$
 for $q = 1, 2, ..., r$.

Split the DG error into

$$U-u=\theta+\eta$$
 where $\theta=U-\Pi u\in\mathcal{W}_r$ and $\eta=\Pi u-u.$

Can show

$$\|\theta\|_{J_n}^2 + \|\theta^n\|^2 + \sum_{i=1}^{n-1} \|[\theta]^i\|^2 \le C_r \left| \int_0^{t_n} \langle \mathcal{B}_{\nu} A \eta, \theta \rangle \, dt \right|.$$

Piecewise-constant case

If r = 1 then

$$\int_0^{t_n} \langle \mathcal{B}_{\nu} A \eta, \theta \rangle dt = \sum_{j=1}^n \left\langle \int_{I_j} \mathcal{B}_{\nu} A \eta dt, \theta^j \right\rangle = \sum_{j=1}^n k_j \langle \bar{\mathcal{B}}_{\nu}^j A \eta, \theta^j \rangle$$

and

$$k_n \bar{\mathcal{B}}^n_{\nu} A \eta = \int_0^{t_n} \frac{\delta_n(t) A u''(t) dt.$$

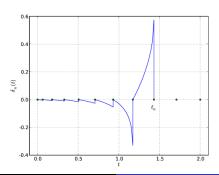
Piecewise-constant case

If r = 1 then

$$\int_0^{t_n} \langle \mathcal{B}_{\nu} A \eta, \theta \rangle \, dt = \sum_{j=1}^n \left\langle \int_{I_j} \mathcal{B}_{\nu} A \eta \, dt, \theta^j \right\rangle = \sum_{j=1}^n k_j \langle \bar{\mathcal{B}}_{\nu}^j A \eta, \theta^j \rangle$$

and

$$k_n \bar{\mathcal{B}}^n_{\nu} A \eta = \int_0^{t_n} \delta_n(t) A u''(t) dt.$$



Error analysis (r = 1)

Easy to estimate $\sum_{i=1}^{n} |\delta_{i}(t)|$ and hence show

$$||U^n-u(t_n)|| \leq ||U^0-u_0|| + \frac{4}{\Gamma(1+\nu)} \sum_{i=1}^n \int_{I_i} (t-t_{j-1})^{\nu} ||Au'(t)|| dt.$$

Error analysis (r = 1)

Easy to estimate $\sum_{i=1}^{n} |\delta_{i}(t)|$ and hence show

$$||U^n-u(t_n)|| \leq ||U^0-u_0|| + \frac{4}{\Gamma(1+\nu)} \sum_{j=1}^n \int_{I_j} (t-t_{j-1})^{\nu} ||Au'(t)|| dt.$$

Tricky argument involving

$$\Delta_j(t) = -\int_0^t \delta_j(s) \, ds$$
 for $t_1 \leq t \leq t_j, \, 2 \leq j \leq n$,

shows

$$||U^{n} - u(t_{n})|| \leq ||U^{0} - u_{0}|| + \frac{1}{\Gamma(1+\nu)} \left(4 \int_{I_{1}} t^{\nu} ||Au'(t)|| dt + 2k_{n} t_{n}^{\nu} ||Au'(t_{n})|| + 6 \sum_{j=2}^{n} k_{j} \int_{I_{j}} t^{\nu} ||Au''(t)|| dt\right).$$

Numer. Algorithms, 52: 69-88, 2009.

Graded mesh: $t_n = (n/N)^{\gamma} T$ for $0 \le n \le N$, with $\gamma \ge 1$.

Numer. Algorithms, 52: 69-88, 2009.

Graded mesh: $t_n = (n/N)^{\gamma} T$ for $0 \le n \le N$, with $\gamma \ge 1$.

If
$$t^{\nu} \|Au'(t)\| \leq Ct^{\sigma-1}$$
, then

$$||U^n - u(t_n)|| \le ||U^0 - u_0|| + Ck^{\nu}$$
 provided $\gamma \ge \max(1, \nu/\sigma)$.

Numer. Algorithms, 52: 69-88, 2009.

Graded mesh:
$$t_n = (n/N)^{\gamma} T$$
 for $0 \le n \le N$, with $\gamma \ge 1$.

If
$$t^{\nu} \|Au'(t)\| \leq Ct^{\sigma-1}$$
, then

$$||U^n - u(t_n)|| \le ||U^0 - u_0|| + Ck^{\nu}$$
 provided $\gamma \ge \max(1, \nu/\sigma)$.

If also
$$t^{
u+1}\|Au''(t)\|\leq Ct^{\sigma-1}$$
, then

$$||U^n - u(t_n)|| \le ||U^0 - u_0|| + Ck$$
 provided $\gamma \ge \max(1, 1/\sigma)$.

Numer. Algorithms, 52: 69-88, 2009.

Graded mesh:
$$t_n = (n/N)^{\gamma} T$$
 for $0 \le n \le N$, with $\gamma \ge 1$.

If
$$t^{\nu} \|Au'(t)\| \leq Ct^{\sigma-1}$$
, then

$$||U^n - u(t_n)|| \le ||U^0 - u_0|| + Ck^{\nu}$$
 provided $\gamma \ge \max(1, \nu/\sigma)$.

If also
$$t^{\nu+1}\|Au''(t)\|\leq Ct^{\sigma-1}$$
, then

$$||U^n - u(t_n)|| \le ||U^0 - u_0|| + Ck$$
 provided $\gamma \ge \max(1, 1/\sigma)$.

Spatial discretization with piecewise-linear finite elements leads to additional error of order $h^2 \log(t_1/t_n)$.

Numer. Algorithms, to appear.

Can show

$$||U - u||_{J_n} \le ||U^0 - u_0|| + ||u - \Pi u||_{J_n} + C \int_{I_1} t^{\nu} ||Au'(t)|| dt$$
$$+ C \sum_{j=2}^n k_j^{1+\nu} \int_{I_j} ||Au''(t)|| dt.$$

Numer. Algorithms, to appear.

Can show

$$||U - u||_{J_n} \le ||U^0 - u_0|| + ||u - \Pi u||_{J_n} + C \int_{I_1} t^{\nu} ||Au'(t)|| dt$$
$$+ C \sum_{j=2}^n k_j^{1+\nu} \int_{I_j} ||Au''(t)|| dt.$$

Gives error of order $k^{1+\nu}$ provided $\gamma > (1+\nu)/\sigma$.

Numer. Algorithms, to appear.

Can show

$$||U - u||_{J_n} \le ||U^0 - u_0|| + ||u - \Pi u||_{J_n} + C \int_{I_1} t^{\nu} ||Au'(t)|| dt$$
$$+ C \sum_{j=2}^n k_j^{1+\nu} \int_{I_j} ||Au''(t)|| dt.$$

Gives error of order $k^{1+\nu}$ provided $\gamma > (1+\nu)/\sigma$.

In practice, observe $O(k^2)$ provided $\gamma > 2/\sigma$.

Numer. Algorithms, to appear.

Can show

$$||U - u||_{J_n} \le ||U^0 - u_0|| + ||u - \Pi u||_{J_n} + C \int_{I_1} t^{\nu} ||Au'(t)|| dt$$
$$+ C \sum_{j=2}^n k_j^{1+\nu} \int_{I_j} ||Au''(t)|| dt.$$

Gives error of order $k^{1+\nu}$ provided $\gamma > (1+\nu)/\sigma$.

In practice, observe $O(k^2)$ provided $\gamma > 2/\sigma$.

Spatial discretization with piecewise-linear finite elements again gives additional error of order $h^2 \log(t_1/t_n)$.

Numer. Algorithms, to appear.

Can show

$$||U - u||_{J_n} \le ||U^0 - u_0|| + ||u - \Pi u||_{J_n} + C \int_{I_1} t^{\nu} ||Au'(t)|| dt$$
$$+ C \sum_{j=2}^n k_j^{1+\nu} \int_{I_j} ||Au''(t)|| dt.$$

Gives error of order $k^{1+\nu}$ provided $\gamma > (1+\nu)/\sigma$.

In practice, observe $O(k^2)$ provided $\gamma > 2/\sigma$.

Spatial discretization with piecewise-linear finite elements again gives additional error of order $h^2 \log(t_1/t_n)$.

New paper proves error of order k^{ρ} for $\rho = \min(2, \frac{3}{2} + \nu)$.

