Exercise 1

Prove the following properties of cyclotomic polynomials over a field for which the polynomials exist.

(a) \(Q_{mp}(x) = Q_m(x^p)/Q_m(x) \) for a prime \(p \) that does not divide \(m \in \mathbb{N} \)

(b) \(Q_{mp}(x) = Q_m(x^p) \) for all \(m \in \mathbb{N} \) divisible by the prime \(p \)

(c) \(Q_{mp^k}(x) = Q_{mp}(x^{p^k-1}) \) for a prime \(p \) and arbitrary \(m, k \in \mathbb{N} \)

(d) \(Q_{2n}(x) = Q_n(-x) \) for odd \(n \geq 3 \)

(e) \(Q_n(0) = 1 \) for \(n \geq 2 \)

(f) \(Q_n(x^{-1})x^{\phi(n)} = Q_n(x) \) for \(n \geq 2 \)

(g) \[
Q_n(1) = \begin{cases}
0 & \text{if } n = 1 \\
p & \text{if } n \text{ is a power of the prime } p \\
1 & \text{if } n \text{ has at least two distinct prime factors}
\end{cases}
\]

(h) \[
Q_n(-1) = \begin{cases}
0 & \text{if } n = 2 \\
-2 & \text{if } n = 1 \\
p & \text{if } n \text{ is 2 times a power of the prime } p \\
1 & \text{otherwise}
\end{cases}
\]

Exercise 2

(a) Determine the primitive 8th roots of unity in \(\mathbb{F}_9 \) and the primitive 9th roots of unity in \(\mathbb{F}_{19} \).

(b) Factor \(Q_5 \) and \(Q_{12} \) over \(\mathbb{F}_{11} \), and factor \(Q_4 \) over \(\mathbb{F}_5 \), \(\mathbb{F}_{13} \), and \(\mathbb{F}_{17} \).

Exercise 3

Let \(\zeta \) be an \(n \)th root of unity over a field \(K \). Then

\[
1 + \zeta + \zeta^2 + \ldots + \zeta^{n-1} = \begin{cases}
0 & \text{if } \zeta \neq 1 \\
\frac{n}{\zeta} & \text{if } \zeta = 1.
\end{cases}
\]

Exercise 4

(a) Let \(K \) be an arbitrary field and \(n \geq 2 \). If the polynomial \(x^{n-1} + x^{n-2} + \ldots + x + 1 \) is irreducible over \(K \), then \(n \) is prime.

(b) Find the least prime \(p \) such that \(x^{22} + x^{21} + \ldots + x + 1 \) is irreducible over \(\mathbb{F}_p \).

(c) Find the ten least primes \(p \) such that \(x^{p-1} + x^{p-2} + \ldots + x + 1 \) is irreducible over \(\mathbb{F}_2 \).