Exercise sheet 1
Date: 20 September 2013

Exercise 1 Prime field examples
(a) Compute the multiplication table for \(\mathbb{F}_5 \). Show that \(\mathbb{F}_5^* \) is cyclic and give a generator.
(b) In \(\mathbb{F}_{79} \), compute \(33 + 57 + 68, 5 \cdot 50, 41 \cdot 27, \frac{1}{20}, \) and \(\frac{3}{27} \).
(c) In \(\mathbb{F}_{1291} \), find the multiplicative inverses of 2, 6, and 538.

Exercise 2 Non-prime field examples
(a) Show that \(x^3 + x + 1 \) is irreducible over \(\mathbb{F}_2 \).
(b) List all elements of \(\mathbb{F}_8 = \mathbb{F}_2[x]/(x^3 + x + 1) \).
(c) Compute \((x + x^2) + (1 + x^2)\) and \((x + x^2) \cdot (1 + x^2)\) in \(\mathbb{F}_8 \).
(d) Show that \(\mathbb{F}_8^* \) is cyclic and find a generator.

Exercise 3 Square roots of unity in \(\mathbb{F}_q \)
Find all \(a \in \mathbb{F}_q \) such that \(a^2 = 1 \).

Exercise 4 Fermat’s Little Theorem
Let \(p \) be a prime and \(a \) an integer not divisible by \(p \). Show that \(a^{p-1} \equiv 1 \mod p \).

Exercise 5 Equation of \(\mathbb{F}_q \)
(a) Let \(\mathbb{F}_q \) be any finite field. Show that \(a^q = a \) for all \(a \in \mathbb{F}_q \).
(b) Now write \(q = p^n \) for \(p \) a prime. Deduce from (a) that \(\mathbb{F}_q \) is the splitting field of \(t^q - t \) over \(\mathbb{F}_p \).

Exercise 6 Subfields, intersection, and compositum
(a) Show that \(\mathbb{F}_{p^m} \subseteq \mathbb{F}_{p^n} \) if and only if \(m \mid n \).
(b) Characterize the intersection \(\mathbb{F}_{p^m} \cap \mathbb{F}_{p^n} \) and the compositum \(\mathbb{F}_{p^m} \mathbb{F}_{p^n} \).

Exercise 7 Every finite integral domain is a field
(a) Recall the definition of an integral domain. How is it different from a field?
(b) Show that every finite integral domain is a field.

Exercise 8 Wilson’s Theorem
Let \(p \) be prime. Show that \(p \) divides \((p - 1)! + 1 \).