Editorial Duties
Awards
Students
PhD
Masters
Projects for PhD, honours or master students
For some possible projects in Statistics, Computational Mathematics or Number Theory click
here. Information on Scholarships for Australian and international students can be found at the
UNSW Graduate Research School page.
Grants
 Chief investigator for Discovery Project from the Australian Research Council, AUD 375,100 over 3 years (20152017) for the project ``Quantifying uncertainty: Innovations in high dimensional computation'', DP150101770. Chief Investigator (CI) A/Prof. Josef Dick (UNSW), CI Dr. Frances Y. Kuo (UNSW), CI Prof. Ian Sloan (UNSW), Partner Investigator (PI) Prof. Michael Giles (University of Oxford), PI Prof. Michael Griebel (University of Bonn).
 Chief investigator for Discovery project from the Australian Research Council, AUD 500,000 over 3 years (20122014) for the project ``Mathematics in the round  the challenge of computational analysis on spheres''. Chief Investigator (CI) Prof. Ian Sloan (UNSW), CI Dr. Josef Dick (UNSW), Partner investigator (PI) Prof. Holger Wendland (Oxford University), PI Prof. Ed B. Saff (Vanderbilt University).
 Queen Elizabeth II Fellowship from the Australian Research Council, AUD 735,000 over 5 years (20102014) for the project ``Algebraic methods for Markov Chain Monte Carlo and quasiMonte Carlo''.
 UNSW Vice Chancellor Fellowship 2006  2009.
Matlab programs
 Higher order QMC: A Matlab function to generate interlaced Sobol points can be found here.
 Randomized higher order QMC: A Matlab function to generate scrambled interlaced Sobol points can be found here.
 Fast QMC matrixvector multiplication: Nonoptimized implementations in Matlab together with some examples can be found here.
There are a number of online resources for generating QMC point sets. The
magic point shop from Dirk Nuyens contains programs to do the componentbycomponent construction and to generate the points. The
Tools for HigherOrder QuasiMonte Carlo website from Robert N. Gantner at SAM ETH Zürich, has point sets for generating higherorder QuasiMonte Carlo rules, with a focus on interlaced polynomial lattice rules. Ísabel Piršić has generating matrices for
NiederreiterXing nets. Frances Y. Kuo has
lattice rule generating vectors and
Sobol sequence generators.
MCQMC Wiki
The
Monte Carlo and quasiMonte Carlo (MCQMC) Wiki page contains a lot of free online material.
arXiv
Many of my preprints can be found on
my arXiv page.
List of publications
Josef Dick's publication listed in MathSciNet can be found
here and his MathSciNet profile
here.
Book

J. Dick and F. Pillichshammer, Digital Nets and Sequences. Discrepancy Theory and QuasiMonte Carlo Integration. Cambridge University Press, Cambridge, 2010, 600 pages.
ISBN 9780521191593. © Cambridge University Press. The book can be ordered from Cambridge University Press here. For a list of known misprints see here. For a preprint version see here. Note that the preprint version differs from the published book. In particular, the page numbers are different. However, numbers of Chapters, Sections, Theorems, Lemmas, Corollaries, Definitions and Examples are the same. Answers to selected exercises can be found here.
Editorial Work

Monte Carlo and quasiMonte Carlo methods 2012. Proceedings of the 10th International Conference on Monte Carlo and QuasiMonte Carlo Methods in Scientific Computing held at the University of New South Wales, Sydney, Australia, February 1317, 2012. Edited by Josef Dick, Frances Y. Kuo, Gareth W. Peters, and Ian H. Sloan. SpringerVerlag, 2014.
The monograph can be purchased from Springer here. A preprint version is available here.
Submitted manuscripts
 J. Dick, R. N. Gantner, Quoc T. Le Gia, Ch. Schwab, Higher order QuasiMonte Carlo integration for Bayesian estimation. Submitted, 2016. For the arXiv version see here.
 J. Dick, T. Goda, K. Suzuki, and T. Yoshiki, Construction of interlaced polynomial lattice rules for infinitely differentiable functions. Submitted, 2016. For the arXiv version see here.
 J.Dick, D. GomezPerez, F. Pillichshammer, and A. Winterhof, Digital inversive vectors can achieve strong polynomial tractability for the weighted star discrepancy and for multivariate integration. Submitted, 2015. For the arXiv version see here.
 J. Dick, A. Hinrichs, L. Markhasin, and F. Pillichshammer, Optimal L_pdiscrepancy bounds for second order digital sequences. Submitted, 2016. For the arXiv version see here.
 J. Dick, A. Hinrichs, L. Markhasin, and F. Pillichshammer, Discrepancy of second order digital sequences in function spaces with dominating mixed smoothness. Submitted, 2016.
 J. Dick, Q. T. Le Gia, F. Y. Kuo and Ch. Schwab, Multilevel higher order QMC Galerkin discretization for affine parametric opertor equations. Submitted, 2014. For the arXiv version see here.
Papers to appear
 J. Dick, Q. T. Le Gia and Ch. Schwab, Higher order QuasiMonte Carlo integration for holomorphic, parametric operator equations. Accepted for publication in SIAM/ASA J. Uncert. Quant., 2015. For the arXiv version see here.
 J. Dick, D. Rudolf and H. Zhu, Discrepancy bounds for uniformly ergodic Markov chain quasiMonte Carlo. Accepted for publication in Ann. Appl. Probab., 2016. For the arXiv version see here.
 H. Zhu and J. Dick, Discrepancy Estimates for AcceptanceRejection Samplers Using Stratified Inputs. Accepted for publication in the Proceedings of the MCQMC 2014 conference, R. Cools and D. Nuyens (Eds.), 2015. For the arXiv version see here.
 H. Zhu and J. Dick, Discrepancy bound for deterministic acceptancerejection sampler beyond $N^{1/2}$ in dimension $1$. Accepted for publication in Stat. Comput., 2016. For the arXiv version see here.
Appeared 2016
Appeared 2015
 Ch. Aistleitner and J. Dick, Functions of bounded variation, signed measures, and a general KoksmaHlawka inequality. Acta Arith., 167, 143171, 2015. DOI: 10.4064/aa16724 For the arXiv version see here.
 J. S. Brauchart, J. Dick and L. Fang, Spatial lowdiscrepancy sequences, spherical cone discrepancy, and applications in financial modeling. J. Comput. Appl. Math., 286, 2853, 2015. DOI: 10.1016/j.cam.2015.02.023 For the arXiv version see here.
 J. S. Brauchart, J. Dick, E. B. Saff, I. H. Sloan, YG. Wang and R. S. Womersley, Covering of spheres by spherical caps and worstcase error for equal weight cubature in Sobolev spaces. J. Math. Anal. Appl., 431, 782811, 2015. DOI: 10.1016/j.jmaa.2015.05.079 For the arXiv version see here.
 J. Dick, A. Hinrichs and F. Pillichshammer, Proof techniques in QuasiMonte Carlo theory. J. Complexity, 31, 327371, 2015. DOI: 10.1016/j.jco.2014.09.003 For the arXiv version see here.
 J. Dick, P. Kritzer, G. Leobacher and F. Pillichshammer, A reduced fast componentbycomponent construction of lattice points for integration in weighted spaces with fast decreasing weights. J. Comp. Appl. Math., 276, 115, 2015. DOI: 10.1016/j.cam.2014.08.017 For the arXiv version see here.
 J. Dick, P. Kritzer, G. Leobacher and F. Pillichshammer, Numerical integration in logKorobov and logcosine spaces. Numer. Alg., 70, 753775, 2015. DOI: 10.1016/10.1007/s110750159972y For the arXiv version see here.
 J. Dick, Q. T. Le Gia, F. Y. Kuo and Ch. Schwab, Fast QMC matrixvector multiplication. SIAM J. Sci. Comput., 37, A1436A1450, 2015. DOI: 10.1137/151005518 For the arXiv version see here. Nonoptimized implementations of the fast QMC matrixvector multiplication in Matlab together with some examples can be found here.
 J. Dick, Q. T. Le Gia and Ch. Schwab, Higher order QuasiMonte Carlo integration in uncertainty quantification. In: R. M. Kirby, M. Berzins and J. S. Hesthaven, (eds.), Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014, Springer, pp. 445453, 2015. For the arXiv version see here.
 J. Dick and F. Pillichshammer, The weighted star discrepancy of Korobov's psets. Proc. Amer. Math. Soc., 143, 50435057, 2015. DOI: 10.1090/proc/12636 For the arXiv version see here.
 T. Goda and J. Dick, Construction of interlaced scrambled polynomial lattice rules of arbitrary high order. Found. Comput. Math., 15, 12451278, 2015. DOI: 10.1007/s1020801492268 For the arXiv version see here.
Appeared 2014
 Ch. Aistleitner and J. Dick, Lowdiscrepancy point sets for nonuniform measures. Acta Arith., 163, 345369, 2014. DOI: 10.4064/aa16344 For the arXiv version see here.
 J. Dick, Discrepancy bounds for infinitedimensional order two digital sequences over F_2. J. Number Th., 136, 204232, 2014. DOI:10.1016/j.jnt.2013.09.012 For the arXiv version see here.
 J. Dick, Numerical integration of Hölder continuous, absolutely convergent Fourier, Fourier cosine, and Walsh series. J. Approx. Theory, 183, 1430, 2014. DOI: 10.1016/j.jat.2014.03.015 For the arXiv version see here.
 J. Dick, Applications of geometric discrepancy in numerical analysis and statistics. In: Larcher G., Pillichshammer F., Winterhof A., and Xing C.P. (eds.), Applied Algebra and Number Theory. Cambridge University Press, Cambridge, 2014, pp. 3957. For the arXiv version see here.
 J. Dick and M. Gnewuch, Optimal randomized changing dimension algorithms for infinitedimensional integration on function spaces with ANOVAtype decomposition. J. Approx. Theory, 184, 111145, 2014. DOI: 10.1016/j.jat.2014.04.014 For the arXiv version see here.
 J. Dick and M. Gnewuch, InfiniteDimensional Integration in Weighted Hilbert Spaces: Anchored Decompositions, Optimal Deterministic Algorithms, and Higher Order Convergence. DOI: 10.1007/s1020801491988 Found. Comput. Math., 14, 10271077, 2014. For the arXiv version see here.
 J. Dick, P. Kritzer, F. Pillichshammer, H. Wozniakowski, Approximation of analytic functions in Korobov spaces. J. Complexity, 30, 228, 2014. DOI:10.1016/j.jco.2013.05.001 For the arXiv version see here.
 J. Dick, F. Y. Kuo, Q. T. Le Gia, D. Nuyens and Ch. Schwab, Higher order QMC Galerkin discretization for parametric operator equations. SIAM J. Numer. Anal., 52, 26762702, 2015. DOI:10.1137/130943984 For the arXiv version see here.
 J. Dick, D. Nuyens and F. Pillichshammer, Lattice rules for nonperiodic smooth integrands. Numer. Math., 126, 259291, 2013. DOI: 10.1007/s0021101305660 For the arXiv version see here.
 J. Dick and F. Pillichshammer, Optimal L_2 discrepancy bounds for higher order digital sequences over the finite field F_2. Acta Arith., 162, 6599, 2014. DOI:10.4064/aa16214 For the arXiv version see here.
 J. Dick and F. Pillichshammer, Explicit constructions of point sets and sequences with low discrepancy. In: P. Kritzer, H. Niederreiter, F. Pillichshammer and A. Winterhof (eds.), Uniform Distribution and QuasiMonte Carlo Methods. Discrepancy, Integration and Applications, De Gruyter, Berlin, 2014, pp. 6386. For the arXiv version see here.
 J. Dick and F. Pillichshammer, The inverse of the stardiscrepancy problem and the generation of pseudorandom numbers. In: K.U. Schmidt and A. Winterhof (eds.), Sequences and their Applications  SETA 2014, Springer, Lecture Notes in Computer Science 8865, Heidelberg, 2014, pp. 173184. For the arXiv version see here.
 J. Dick and F. Pillichshammer, Discrepancy theory and quasiMonte Carlo integration. In: W. W. L. Chen, A. Srivastav, G. Travaglini (eds.), Panoramy in Discrepancy Theory, Springer Verlag, Cham, 2014, pp. 539619. See here for a preprint version.
 J. Dick and D. Rudolf, Discrepancy estimates for variance bounding Markov chain quasiMonte Carlo. Electron. J. Probab., 19, 124, 2014. DOI:10.1214/EJP.v193132 For the arXiv version see here.
 A. Owen, J. Dick and S. Chen, Higher order Sobol' indices. Information and Inference, 3, 5981, 2014. DOI:10.1093/imaiai/iau001 For the arXiv version see here. The published version can be downloaded free of charge here.
 H. Zhu and J. Dick, Discrepancy bounds for deterministic acceptancerejection samplers. Electron. J. Stat., 8, 678707, 2014. DOI:10.1214/14EJS898 For the arXiv version see here.
Appeared 2013
 J. S. Brauchart and J. Dick, A simple proof of Stolarsky's invariance principle. Proc. Amer. Math. Soc., 141, 20852096, 2013. DOI:10.1090/S000299392013114905 For the arXiv version see here.
 J. Brauchart and J. Dick, A characterization of Sobolev spaces on the sphere and an extension of Stolarsky's invariance principle to arbitrary smoothness. Constr. Approx., 38, 397445, 2013. DOI:10.1007/s003650139217z For the arXiv version see here.
 J. Dick, F. Y. Kuo and I. H. Sloan, High dimensional numerical integration  the QuasiMonte Carlo way. Acta Numerica, 22, 133288, 2013. DOI: 10.1017/S09624929130 The published paper can be downloaded from the publishers website here. It can also be freely downloaded from here.
 J. Dick and M. Matsumoto, On the fast computation of the weight enumerator polynomial and the t value of digital nets over finite abelian groups. SIAM J. Discrete Math., 27, 13351359, 2013. DOI:10.1137/120893677 For the arXiv version see here.
Appeared 2012
 Ch. Aistleitner, J. Brauchart and J. Dick, Point sets on the sphere S^2 with small spherical cap discrepancy. Discrete Comput. Geom., 48, 9901024, 2012. DOI: 10.1007/s0045401294513 For an arXiv version see here.
 J. Baldeaux, J. Dick, G. Leobacher, D. Nuyens and F. Pillichshammer, Efficient calculation of the worstcase error and (fast) componentbycomponent construction of higher order polynomial lattice rules. Numer. Alg., 59, 403431, 2012. DOI: 10.1007/s110750119497y For an arXiv version see here.
 J. S. Brauchart and J. Dick, QuasiMonte Carlo rules for numerical integration over the unit sphere S. Numer. Math., 121, 473502, 2012. DOI: 10.1007/s0021101104446 For an arXiv version see here.
 J. Dick, Random weights, robust lattice rules and the geometry of the cbcrc algorithm. Numer. Math., 122, 443467, 2012. DOI: 10.1007/s0021101204695 For an arXiv version see here.
 J. Dick and P. Kritzer, A higher order BlokhZyablov propagation rule for higher order nets. Finite Fields App., 18, 11691183, 2012. DOI: 10.1016/j.ffa.2012.08.003 For an arXiv version see here.
Appeared 2011
 J. Baldeaux and J. Dick, A Construction of Polynomial Lattice Rules with Small Gain Coefficients. Numer. Math., 119, 271297, 2011. doi:10.1007/s0021101103850 For a blog entry and a preprint version of this paper see here.
 J. Baldeaux, J. Dick, J. Greslehner, and F. Pillichshammer, Construction algorithms for higher order polynomial lattice rules. J. Complexity, 27, 281299, 2011.doi:10.1016/j.jco.2010.06.002
 J. Baldeaux, J. Dick, and F. Pillichshammer, Duality Theory and Propagation Rules for Higher Order Nets. Discrete Math., 311, 362386, 2011. doi:10.1016/j.disc.2010.11.002 For a blog entry and a preprint version of this paper see here.
 S. Chen, J. Dick and A.B. Owen, Consistency of Markov Chain QuasiMonte Carlo on continuous state spaces. Ann. Stat., 39, 679701, 2011. doi: 10.1214/10AOS831 For a blog entry and preprint version of this paper see here.
 J. Dick, Higher order scrambled digital nets achieve the optimal rate of the root mean square error for smooth integrands. Ann. Stat., 39, 13721398, 2011. doi: 10.1214/11AOS880 For a blog entry and preprint version of this paper see here.
 J. Dick, QuasiMonte Carlo integration on $\mathbb{R}^s$: digital nets and worstcase error. SIAM J. Numer. Anal., 49, 16611691, 2011. doi: 10.1137/100789853 For a blog entry and preprint version of this paper see here and also here.
 J. Dick, G. Larcher, F. Pillichshammer, and H. Wozniakowski, Exponential Convergence and Tractability of Multivariate Integration for Korobov Spaces. Math. Comp., 80, 905930, 2011. doi: 10.1090/S002557182010024330 For a blog entry and preprint version of this paper see here.
Appeared 2010
 J. Baldeaux, J. Dick, and F. Pillichshammer, A characterization of higher order nets using Weyl sums and its applications. Uniform Distr. Theory, 5, 133155, 2010.
 J. Dick and P. Kritzer, Duality theory and propagation rules for generalized digital nets. Math. Comp., 79, 9931017, 2010. doi: 10.1090/S0025571809023151
Appeared 2009
 J. Baldeaux and J. Dick, QMC Rules of Arbitrary High Order: Reproducing Kernel Hilbert space approach. Constructive Approximation, 30, 495527, 2009. doi: 10.1007/s003650099074y
 J. Baldeaux, J. Dick, and P. Kritzer, On the approximation of smooth functions using generalized digital nets. J. Complexity, 25, 544 567, 2009. doi: 10.1016/j.jco.2009.07.003
 J. Dick, The decay of the Walsh coefficients of smooth functions. Bull. Austral. Math. Soc., 80, 430453, 2009. doi: 10.1017/S0004972709000392 For an arXiv version see here.
 J. Dick and H. Niederreiter, Duality for digital sequences. J. Complexity, 25, 406414, 2009. doi: 10.1016/j.jco.2009.06.004
 K. I. Liu, J. Dick, and F. J. Hickernell, A multivariate fast discrete Walsh transform with an application to function interpolation. Math. Comp., 78, 15731591, 2009. doi: 10.1090/S0025571809022029
 J. Dick, On quasiMonte Carlo rules achieving higher order convergence. In: Proceedings of the MCQMC'08 conference, Montreal, Canada, P. L'Ecuyer and A. Owen (eds.), pp. 7396, 2009. doi: 10.1007/9783642041075_5 An earlier version can be found here.
 J. Dick and J. Baldeaux, Equidistribution properties of generalized nets and sequences. In: Proceedings of the MCQMC'08 conference, Montreal, Canada, P. L'Ecuyer and A. Owen (eds.), pp. 305323, 2009. doi: 10.1007/9783642041075_19 An earlier version can be found here.
Appeared 2008
 J. Dick, Walsh spaces containing smooth functions and quasiMonte Carlo rules of arbitrary high order. SIAM J. Numer. Anal., 46, 15191553, 2008. doi: 10.1137/060666639 For a Matlab program generating higher order digital nets, numerical examples and plots of higher order digital nets see here. For the arXiv version see here.
 J. Dick, KoksmaHlawka type inequalities of fractional order. Ann. Mat. Pura Appl., 187, 385403, 2008. doi: 10.1007/s102310070048z
 J. Dick, P. Kritzer, and F. Y. Kuo, Approximation of Functions Using Digital Nets. In: Proceedings of the MCQMC conference 2006, Ulm, Germany, A. Keller, S. Heinrich and H. Niederreiter (Eds.), Springer Verlag, Berlin, 275297, 2008. An earlier version can be found here.
 J. Dick and H. Niederreiter, On the exact $tvalue of Niederreiter and Sobol' sequences. J. Complexity, 24, 572581, 2008. doi: 10.1016/j.jco.2008.05.004
 J. Dick, F. Pillichshammer, and B. J. Waterhouse, The construction of good extensible rank1 lattices. Math. Comp., 77, 23452373, 2008. doi: 10.1090/S0025571808020097
 F. J. Hickernell and J. Dick, An algorithm driven approach to error analysis for multidimensional integration. Int. J. of Num. Anal. and Modeling, 5, 167189, 2008.
Appeared 2007
 L. L. Cristea, J. Dick, G. Leobacher, and F. Pillichshammer, The tent transformation can improve the convergence rate of quasiMonte Carlo algorithms using digital nets. Numer. Math., 105, 413455, 2007. doi: 10.1007/s002110060046x
 J. Dick, Explicit constructions of quasiMonte Carlo rules for the numerical integration of high dimensional periodic functions. SIAM J. Numer. Anal., 45, 21412176, 2007. doi: 10.1137/060658916 For the arXiv version see here.
 J. Dick, The construction of extensible polynomial lattice rules with small weighted star discrepancy. Math. Comp., 76, 20772085, 2007. doi: 10.1090/S0025571807019849
 J. Dick, A note on the existence of sequences with small star discrepancy. J. Complexity, 23, 649652, 2007. doi: 10.1016/j.jco.2007.01.004
 J. Dick, P. Kritzer, F. Y. Kuo, and I. H. Sloan, LatticeNyström method for Fredholm integral equations of the second kind. J. Complexity, 23, 752772, 2007. doi: 10.1016/j.jco.2007.03.004
 J. Dick, P. Kritzer, G. Leobacher, and F. Pillichshammer, Constructions of general polynomial lattice rules based on the weighted star discrepancy. Finite Fields Appl., 13, 10451070, 2007. doi: 10.1016/j.ffa.2006.09.001
 J. Dick, P. Kritzer, F. Pillichshammer, and W. Ch. Schmid, On the existence of higher order polynomial lattices based on a generalized figure of merit. J. Complexity, 23, 581593, 2007. doi: 10.1016/j.jco.2006.12.003
 J. Dick, G. Leobacher, and F. Pillichshammer, Randomized Smolyak algorithms based on digital sequences for multivariate integration. IMA J. Numer. Anal., 27, 655674, 2007. doi: 10.1093/imanum/drm002
 J. Dick and F. Pillichshammer, Strong tractability of multivariate integration of arbitrary high order using digitally shifted polynomial lattice rules. J. Complexity, 23, 436453, 2007. doi: 10.1016/j.jco.2007.02.001
 J. Dick, F. Pillichshammer, and B. J. Waterhouse, The construction of good extensible Korobov rules. Computing, 79, 7991, 2007. doi: 10.1007/s0060700602169
Appeared 2006
 L. L. Cristea, J. Dick, and F. Pillichshammer, On the mean square weighted L_2 discrepancy of randomized digital nets in prime base. J. Complexity, 22, 605629, 2006. doi: 10.1016/j.jco.2006.03.005
 J. Dick, A Taylor space for multivariate integration. Monte Carlo Methods Appl., 12, 99112, 2006. doi: 10.1515/156939606777488860
 J. Dick and P. Kritzer, A best possible upper bound on the star discrepancy of (t,m,2)nets. Monte Carlo Methods Appl., 12, 117, 2006. doi: 10.1515/156939606776886643
 J. Dick, H. Niederreiter, and F. Pillichshammer, Weighted star discrepancy of digital nets in prime bases. In: Proceedings of the MC^2QMC conference 2004, JuanlesPins, France, H. Niederreiter and D. Talay (Eds.), Springer Verlag, Berlin, 7796, 2006. An earlier version can be found here.
 J. Dick and F. Pillichshammer, Periodic functions with bounded remainder. Arch. Math. (Basel), 87, 554563, 2006. doi: 10.1007/s0001300618370
 J. Dick, I. H. Sloan, X. Wang, and H. Wo\'zniakowski, Good lattice rules in weighted Korobov spaces with general weights. Numer. Math., 103, 6397, 2006. doi: 10.1007/s0021100506746
 G. Pirsic, J. Dick, and F. Pillichshammer, Multivariate integration in weighted Sobolev spaces with cyclic nets and hyperplane nets. SIAM J. Numer. Anal., 44, 385411, 2006. doi: 10.1137/050622638
Appeared 2005
 J. Dick and P. Kritzer, Star discrepancy estimates for digital (t,m,2)nets and (t,2)sequences over Z_2. Acta Math. Hungar., 109, 239254, 2005. doi: 10.1007/s1047400502436
 J. Dick, F. Y. Kuo, F. Pillichshammer, and I. H. Sloan, Construction algorithms for polynomial lattice rules for multivariate integration. Math. Comp., 74, 18951921, 2005. doi: 10.1090/S0025571805017424
 J. Dick, G. Leobacher, and F. Pillichshammer, Construction algorithms for digital nets with small weighted star discrepancy. SIAM J. Numer. Anal., 43, 7695, 2005. doi: 10.1137/040604662
 J. Dick and F. Pillichshammer, Multivariate integration in weighted Hilbert spaces based on Walsh functions and weighted Sobolev spaces. J. Complexity, 21, 149195, 2005. doi: 10.1016/j.jco.2004.07.003
 J. Dick and F. Pillichshammer, On the mean square weighted L_2 discrepancy of randomized digital (t,m,s)nets over Z_2. Acta Arith., 117, 371403, 2005. doi: 10.4064/aa11744
 J. Dick and F. Pillichshammer, Dyadic diaphony of digital nets over Z_2. Monatsh. Math., 145, 285299, 2005. doi: 10.1007/s0060500402877
 J. Dick and F. Pillichshammer, The figure of merit of 2dimensional rank 2 lattice rules. INTEGERS, Electronic Journal of Combinatorial Number Theory, 5(3), \#A05, 2005.
 J. Dick and F. Pillichshammer, Diaphony, discrepancy, spectral test and worstcase error. Math. Comput. Simulation, 70, 159171, 2005. doi: 10.1016/j.matcom.2005.06.004
Appeared 2004
 J. Dick, On the convergence rate of the componentbycomponent construction of good lattice rules. J. Complexity, 20, 493522 , 2004. doi: 10.1016/j.jco.2003.11.008
 J. Dick and F. Y. Kuo, Reducing the construction cost of the componentbycomponent construction of good lattice rules. Math. Comp., 73, 19671988, 2004. doi: 10.1090/S0025571803016107
 J. Dick and F. Y. Kuo, Constructing good lattice rules with millions of points. In: Proceedings of the MCQMC conference 2002, Singapore, H. Niederreiter (Ed.), Springer Verlag, Berlin, 181197, 2004. An earlier version can be found here.
 J. Dick, I. H. Sloan, X. Wang, and H. Wo\'zniakowksi, Liberating the weights. J. Complexity, 20, 593623, 2004. doi: 10.1016/j.jco.2003.06.002
 X. Wang, I. H. Sloan, and J. Dick, On Korobov lattice rules in weighted Korobov spaces. SIAM J. Numer. Anal., 42, 17601779, 2004. doi: 10.1016/j.jco.2003.06.002