The complexity obstacle

JAMES FRANKLIN

Science and certainty don't always go hand in hand

S

CIENCE has suffered some hits to its credibility in recent times. Not enough to have most people ditching their dental anaesthetics for meditation, but enough to curb enthusiasm for emissions trading schemes. Many have been left wondering if scientists really know as much as they say they do when they're asking for large sums of public money.

Remember the Climategate affair. As with WikiLeaks, what was actually revealed in the leaked emails from the University of East Anglia's Climate Research Unit was somewhat underwhelming and mostly consisted of free and frank but reasonable expressions of views. No matters of fact came to light that suggested any need for a substantial rethink of climate science theory. But some minor grubbiness and obstinacy about sharing raw data was enough to give the impression that something was rotten.

The affair, nevertheless, contributed to a reduction of public support across the world for carbon-reduction strategies. Ross Garnaut, as reported on March 13, admits the public is less convinced about climate science, although the science itself has not changed.

The activities of the world's most famous scientists have not helped. As Oxford's professor for public understanding of science, Richard Dawkins made a career of pontificating on non-scientific topics he plainly knew nothing about, such as religion and philosophy. That confirmed many people's prejudices that scientists are simplistic folk who cannot see past the end of their microscopes; certainly not to be trusted with important matters such as public policy.

Finally, there have been concerns about the "decline effect" or "cosmic inflation". An alarming proportion of results published in the most reputable journals and supported by the best statistical tests seem to have gradually become false — effects harder and harder to replicate, cures working less and less. Psychostimulant drugs are a particularly bad area. The extent of the problem is unclear (it is not as if the charge on the electronics has become funnier with time), as are its causes, but there is an uneasy feeling of something amiss.

— These developments have taken place against a background of constant sniping from the academic enemies of rationality loosely called postmodernists. In the more rarified reaches of university humanities faculties, it is de rigueur to denigrate science and socially constructed, implying that its results depend not on evidence but on the wishes of the great and powerful.

So where is science certain? Or is that the wrong question? Should we be happy with high probability and, if so, where is that available?

Let us take a Cartesian approach and go back to square one. Descartes asked the question: What do we really know? and answered: We are certain at least of our own existence. That is bedrock that cannot be doubted, and we can work out from there.

In science, the bedrock is that beyond doubt is mathematics. No one need accept authority in mathematics because the truth is plain for all to see (albeit in simple cases). Consider two rows of three things, such as the amicrons below:

\[& & & \\
& & &
\]

The brain provides us with a wonderful scientific visualisation facility, or mind's eye. It allows us to group objects mentally in one way or another. We can see the amicrons as two rows of three (2 x 3), or three columns of two (3 x 2).

Since they are the same objects 2 x 3 must equal 3 x 2. We not only know that 2 x 3 = 3 x 2, we understand why it must be so.

Further, it is clear that the same argument would work for any larger rectangular array. That is a remarkable achievement: certain knowledge, an infinite number of truths, just by thinking. There are plenty more truths where that came from, proved true in the extensive literature of pure mathematics.

The essence of rationality, who believe the whole concept of the objectivity of knowledge is a conservative plot, have been quick to extol the damage threatened by the certainty of mathematics. It has not been easy.

A few books have appeared with titles such as Social Constructivism or a Philosophy of Mathematics, but the standard irrationalist arguments against objectivity have not worked well; for example, there have not been found primitive tribes who believe that 2 + 2 = 5, or minus 2, or 37, so there is no argument from the diversity of beliefs in different cultures.

However, another argument has more initial plausibility and currency. Surely if something is proved, it must be proved from some axioms, which themselves must be arbitrarily chosen? For example, could we not set up alternative number systems in which 2 + 2 does equal 5? In any case, surely whatever certain mathematics has, it is only about an ideal world (of abstract numbers, or sets, or models), and the certainty does not translate to the messy real world in which we live? What if we put two rabbits in a box, then another two; if we look later, might we not find five?

Those reactions are not correct. The result 2 x 3 = 3 x 2 is true not only of abstract numbers but of real amicrons on paper. Our understanding of why it is true does not depend on any assumed axioms. We could set up an alternative system and call its members numbers, but that has no relevance to the truth about the numbers, the ones that measure the quantity of things. (Compare the old children's joke: "How many legs has a dog got, if you call his tail a leg?" Answer: "Four. You can call it tall anything you like,

Energy price must be paid
The climate is definitely changing, and human activities are a major contributor. The evidence for this is overwhelming, with scientific consensus that the Earth is warming due to greenhouse gases. Climate change is not only affecting the environment but also has significant implications for society, economy, and human well-being. It is crucial that we act now to mitigate the effects and adapt to the changes we cannot avoid.