UNIVERSITY OF NEW SOUTH WALES
SCHOOL OF MATHEMATICS AND STATISTICS
MATH1131/1141 Mathematics 1A Algebra S1 2014
TEST 1 VERSION 3a

This sheet must be filled in and stapled to the front of your answers

Student's Family Name
Initials

Student Number

Tutorial Code
Tutor's Name

Mark

Note: The use of a calculator is NOT permitted in this test
Show all your working. All answers should be given in the appropriately SIMPLIFIED form.

QUESTIONS (Time allowed: 25 minutes)

1. (2 marks)
 For the points $A(3,2,1)$ and $B(6,3,-2)$
 (i) Find a parametric vector equation for the line AB.
 (ii) Find Cartesian equations for the line AB.

2. (2 marks)
 Find a parametric vector equation for the plane in \mathbb{R}^3 with cartesian equation

 $7x_1 + 2x_2 - x_3 = 1$

 Hence give two non-parallel, non-zero vectors which are parallel to the plane.

3. (3 marks)
 For the points $A(1, 4, 1)$, $B(3, 5, -2)$ and $C(5, 1, 2)$,
 (i) Find $\cos(\angle BAC)$.
 (ii) Find $\text{proj}_{AC}(AB)$.

4. (3 marks)
 In the plane with a cartesian co-ordinate system, let $OACB$ be a parallelogram, with O the origin and $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$, where $\mathbf{a} \parallel \mathbf{b}$.
 (i) Write down (and label as such), parametric vector equations of the lines OC and AB in terms of \mathbf{a} and \mathbf{b}.
 (ii) Find the co-ordinates of the point P of intersection of lines OC and AB in terms of \mathbf{a} and \mathbf{b}.
 (iii) Show that $|\overrightarrow{OP}| = |\overrightarrow{PC}|$ and $|\overrightarrow{PA}| = |\overrightarrow{PB}|$.

Please write your answers on lined A4 paper and staple to this cover sheet.
Note: The use of a calculator is NOT permitted in this test
Show all your working. All answers should be given in the appropriately SIMPLIFIED form.

QUESTIONS (Time allowed: 25 minutes)

1. (3 marks)
A block of wood is subject to 3 forces: \(\mathbf{F}_1 = 3 \text{N due north, } \mathbf{F}_2 = 2 \text{N due East and } \mathbf{F}_3 = 5 \text{N due south-west.} \) (N = newtons, a unit of force).

Let \(\mathbf{F} = \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3 \) be the resultant force on the block.

(i) On a scaled diagram draw the 3 forces \(\mathbf{F}_1, \mathbf{F}_2, \mathbf{F}_3 \) and the resultant force \(\mathbf{F} \) which shows geometrically how the forces add.

(ii) Using co-ordinates, find simplified expressions for \(|\mathbf{F}| \) and \(\tan(\theta) \) where the resultant force is in the direction \(W \theta S \), i.e. \(\theta \) south of west: \(W \theta S \).

2. (3 marks)
Consider the line \(\ell \) and plane \(\Pi \) in \(\mathbb{R}^3 \) with cartesian equations:

\[
\ell: \quad \frac{x-2}{3} = \frac{y+1}{4} = \frac{z+3}{1}
\]
\[
\Pi: \quad 3x - 2y - 4z = 11.
\]

(i) Find a parametric equation of the line \(\ell \).

(ii) Find the co-ordinates of the point \(P \) where \(\ell \) meets \(\Pi \).

3. (4 marks)
For the points \(A(1, 2, 3), B(-2, 5, 3), C(2, 4, 5). \)

(i) Calculate \(\text{proj}_{\mathbf{AC}} \left(\mathbf{AB} \right) \).

(ii) Calculate the length of the altitude in \(\triangle ABC \) through \(A \) and perpendicular to \(BC \).

(iii) Find the co-ordinates \(\mathbf{m} \) of the point \(M \) on \(BC \) where \(AM \) is this altitude through \(A \) and perpendicular to \(BC \).

Please write your answers on lined A4 paper and staple to this cover sheet.
By the coordinate system as pictured, the coordinates of the three forces are
\[
\begin{align*}
F &= (0, 3), \quad F_2 = (2, 0), \quad F_3 = (5 \cos 45^\circ, -5 \sin 45^\circ)
\end{align*}
\]
Hence, \[F = (2 - 5 \frac{\sqrt{2}}{2}, \ 3 - 5 \frac{\sqrt{2}}{2}) \]

\[
|F| = \sqrt{(2 - 5 \frac{\sqrt{2}}{2})^2 + (3 - 5 \frac{\sqrt{2}}{2})^2}
\]
\[
= \sqrt{4 - 10\sqrt{2} + \frac{25}{2} + 9 - 15\sqrt{2} + \frac{25}{2}}
\]
\[
= \sqrt{38 - 20\sqrt{2}} \quad (\text{not simplified})
\]
\[
\tan \theta = \frac{3 - \frac{5\sqrt{2}}{2}}{2 - \frac{5\sqrt{2}}{2}} = \frac{3\sqrt{2} - 5}{2\sqrt{2} - 5} \quad \text{[1]}
\]

(i) \[\lambda = \frac{x-2}{3} \]
\[\Rightarrow \ x = \left(\frac{2 + 3\lambda}{1} \right) + \lambda \left(\frac{3}{1} \right) \quad \text{[1]}
\]

(ii) A point on \(l \) has coordinates \[x = \left(\frac{2 + 3\lambda}{1} \right) \text{ for some } \lambda \in \mathbb{R} \]

If the point lies in \(\Pi \), then \(l \) satisfies the plane equation
\[3(2 + 3\lambda) - 2(1 + 4\lambda) - 4(-1 + \lambda) = 11 \]
\[\Rightarrow \ -3\lambda = 11 - 20 = -9 \quad \lambda = 3 \]

Hence, the intersection has coordinates \[x = \left(\frac{11}{1} \right) \]

(i) \(\overrightarrow{AB} = \left(\begin{array}{c} 2 \\ 2 \\ 3 \end{array} \right) \), \(\overrightarrow{AC} = \left(\begin{array}{c} 1 \\ 2 \\ 2 \end{array} \right) \)

\[\text{proj}_{\overrightarrow{AC}} \overrightarrow{AB} = \frac{\overrightarrow{AC} \cdot \overrightarrow{AB}}{\| \overrightarrow{AC} \|^2} \overrightarrow{AC} = \frac{6 - 3}{9} \left(\begin{array}{c} 1 \\ 2 \\ 2 \end{array} \right) = \left(\begin{array}{c} 1 \\ 2 \\ 2 \end{array} \right) \quad \text{[1]}
\]

(ii) \(\overrightarrow{BC} = \left(\begin{array}{c} \frac{2}{3} \\ \frac{2}{3} \\ \frac{2}{3} \end{array} \right) \)

Line through \(B, C \) has eq \[x = \left(\frac{2}{3} \right) + \lambda \left(\frac{4}{3} \right) \quad \text{[4]}
\]

The plane through \(A \) with normal \(\overrightarrow{BC} \) has (pt-normal) equation \(\left(\frac{1}{3} \right) x + \left(\frac{1}{3} \right) y + \left(\frac{1}{3} \right) z = 8 \quad \text{[5]}
\]

Insert \([4]\) into \([5]\): \[\left(\frac{2}{3} + \frac{2}{3} \lambda \right) - \left(5 - \lambda \right) + 2 \left(\frac{2}{3} + \lambda \right) = 8 \quad \lambda = 1 \]

Hence, \[\lambda = \left(\frac{2 + 2\lambda}{3} \right) = \left(\frac{6}{3} \right) \quad \text{[6]}
\]

\[\text{altitude} = |\overrightarrow{AC}| = \left(\frac{1}{3} \right) \left(\frac{16}{1} \right) = \frac{4}{3} \sqrt{5} \quad \text{[7]}
\]

\[\overrightarrow{AB} = \left(\begin{array}{c} 1 \\ 2 \\ 2 \end{array} \right) \quad \text{[8]}
\]

\[\overrightarrow{AC} = \left(\begin{array}{c} 1 \\ 2 \\ 2 \end{array} \right) \quad \text{[9]}
\]

\[\overrightarrow{BC} = \left(\begin{array}{c} \frac{2}{3} \\ \frac{2}{3} \\ \frac{2}{3} \end{array} \right) \quad \text{[10]}
\]

\[\text{altitude} = \sqrt{\frac{16}{9} \cdot \frac{2}{3} \cdot \frac{2}{3} \cdot \frac{2}{3}} = \sqrt{\frac{16}{9} \cdot \frac{4}{3}} = \frac{2}{3} \sqrt{5} \quad \text{[11]}
\]