MATH1231 CALCULUS
Session II 2007.

Dr John Roberts (notes written by A./Prof. Bruce Henry)

Red Center Room 3065
Jag.Roberts@unsw.edu.au
(5.2) Definition
A power series (around $x = 0$) is a function of the form

\[P(x) = a_0 + a_1 x + a_2 x^2 + \ldots = \sum_{n=0}^{\infty} a_n x^n \]

a_0, a_1, \ldots are fixed real constants

x is a real variable.

All the standard functions of calculus can be written \textbf{exactly}
in the form of \textbf{power series} over a finite domain.
Example

\[\tan x \]

\[x \]

\[x + \frac{1}{3} x^3 \]

\[x + \frac{1}{3} x^3 + \frac{2}{15} x^5 + \frac{17}{315} x^{17} \]
How do we determine the convergence of a power series?

How do we find the power series that represents a given function?

How do we find the error in approximating the function with a finite number of terms in the power series?
Example

\[P(x) = \sum_{n=0}^{\infty} x^n \quad \text{geometric series} \]

If \(|x| \geq 1 \) then \(P(x) \) diverges

If \(|x| < 1 \) then \(P(x) = \frac{1}{1-x} \)

\[\frac{1}{1-x} = 1 + x + x^2 + x^3 + \ldots \quad \text{for} \quad |x| < 1 \]
Example

\[P(x) = \sum_{n=0}^{\infty} \frac{x^n}{n} \]

Ratio test (for absolute convergence)

\[
\lim_{n \to \infty} \left| \frac{x^{n+1}}{n+1} \right| = \lim_{n \to \infty} \frac{n|x|}{n + 1} \to |x|
\]

* If \(|x| > 1\) then \(P(x)\) diverges
* If \(|x| < 1\) then \(P(x)\) converges

What about the end points?
* If \(x = 1\) then \(P(x) = \sum \frac{1}{n}\) diverges (harmonic)
* If \(x = -1\) then \(P(x) = \sum \frac{(-1)^n}{n}\) converges (Leibniz)
Example

\[P(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \]

Ratio test (for absolute convergence)

\[
\lim_{n \to \infty} \left| \frac{x^{n+1}}{(n+1)!} \right| = \lim_{n \to \infty} \frac{|x|}{n + 1} \to 0 \quad \forall x
\]

\[P(x) \text{ converges for all } x \]
(5.3) Radius of Convergence

All power series (around $x = 0$) converge on a symmetric domain $x \in (-R, R)$ where R is called the radius of convergence.

Theorem

i) $\sum_{n=0}^{\infty} a_n x^n$ converges absolutely whenever $|x| < R$

ii) $\sum_{n=0}^{\infty} a_n x^n$ diverges whenever $|x| > R$

If the series converges for all x then $R = \infty$
If the series converges only for $x = 0$ then $R = 0$
Interval of Convergence

The power series

\[P(x) = \sum_{n=0}^{\infty} a_n x^n \]

may or may not converge at the end points \(x = R \) and \(x = -R \) these points need to be tested separately

The interval \((-R, R)\) together with those endpoints where the power series converges is called the interval of convergence

The interval of convergence is the domain of the function

\[P(x) = \sum_{n=0}^{\infty} a_n x^n \]
Theorem

\[R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| \quad \text{if this limit exists} \]

Proof

Consider the ratio test for \(\sum a_n x^n \)

\[
\lim_{n \to \infty} \frac{|a_{n+1}x^{n+1}|}{|a_n x^n|} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| |x|
\]

The series diverges if \(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| |x| > 1 \)

The series converges if \(\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| |x| < 1 \)

\[\Rightarrow |x| < \lim_{n \to \infty} \frac{1}{\left| \frac{a_{n+1}}{a_n} \right|} = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = R \]
(5.4) Power series in powers of \((x - x_0)\)

Definition

A power series around \(x_0\) is a function of the form

\[
P(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \ldots = \sum_{n=0}^{\infty} a_n(x - x_0)^n
\]

\(a_0, a_1, \ldots\) are fixed real constants

\(x\) is a real variable.

Note

The results for power series around \(x_0\) can be obtained from results for power series around \(0\) after a change of variables \(u = x - x_0\).
Define the radius of convergence

\[R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| \]

then

\[\sum_{n=0}^{\infty} a_n(x - x_0)^n \] converges absolutely for \(|x - x_0| < R \)

\[\sum_{n=0}^{\infty} a_n(x - x_0)^n \] diverges for \(|x - x_0| > R \)

Also check convergence at the end points \(x = x_0 \pm R \)
Example
Find the interval of convergence for

\[P(x) = \sum_{n=0}^{\infty} \left(\frac{2^n}{3^n + 1} \right) (x - 2)^n \]
Example
Find the interval of convergence for

\[P(x) = \sum_{n=0}^{\infty} \left(\frac{2^n}{(3^n + 1)n} \right) (x - 2)^n \]
(5.5) Differentiation and Integration of Power Series

If \(P(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n \) for \(|x - x_0| < R\) then

1. \(P \) is continuous and differentiable for \(|x - x_0| < R\)
 \[
 \frac{dP}{dx} = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1}
 \]

2. \(P \) is integrable on \(|x - x_0| < R\)
 \[
 \int P(x) \, dx = \sum_{n=0}^{\infty} \frac{a_n}{n+1} (x - x_0)^{n+1} + C
 \]

convergent power series can be differentiated and integrated term by term.
Example

\[f(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \]

\[\Rightarrow f'(x) = \sum_{n=0}^{\infty} \frac{nx^{n-1}}{n!} = \sum_{n=1}^{\infty} \frac{nx^{n-1}}{n!} = \sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!} \]

\[= \sum_{k=0}^{\infty} \frac{x^k}{k!} = \sum_{n=0}^{\infty} \frac{x^n}{n!} = f(x) \]

But \(f'(x) = f(x) \) with \(f(0) = 1 \) has solution \(f(x) = e^x \)

\[\Rightarrow e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \]
Theorem

If \(P(x) = \sum a_n(x - x_0)^n \quad |x - x_0| < R_1 \)
and \(Q(x) = \sum b_n(x - x_0)^n \quad |x - x_0| < R_2 \)

then for \(|x - x_0| < \min(R_1, R_2) \)

(i) \((P + Q)(x) = \sum (a_n + b_n)(x - x_0)^n \)
(ii) \((P \cdot Q)(x) = a_0 b_0 + (a_0 b_1 + a_1 b_0)(x - x_0) + \\
+ (a_0 b_2 + a_1 b_1 + a_2 b_0)(x - x_0)^2 + \\
+ (a_0 b_3 + a_1 b_2 + a_2 b_1 + a_3 b_0)(x - x_0)^3 + \ldots \)
Example – February 1998

\[\frac{1}{1-x} = 1 + x + x^2 + x^3 + \ldots = \sum_{n=0}^{\infty} x^n \quad \forall \quad |x| < R \in \mathbb{R}^+ \]

a) By integrating find a power series for \(\log(1-x) \quad \forall \quad |x| < R. \)

b) Write down the power series for \(\log(1+x) \quad \forall \quad |x| < R \)

c) Deduce that

\[\log \left(\frac{1+x}{1-x} \right) = 2 \left(x + \frac{x^3}{3} + \frac{x^5}{5} + \ldots \right) \quad \forall \quad |x| < R \]

d) Find \(R \)

e) Use the first two terms of the series in part c) to find a rational number to approximate \(\log 2 \)
(5.7) Taylor Series and Maclaurin Series

Many well known functions $f(x)$ can be written as power series, $f(x) = \sum_{n=0} a_n x^n$.

How do we determine the coefficients a_n?

Definition
Suppose that $f(x)$ is infinitely differentiable at x_0 then

$$P(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

is the **Taylor series of f about x_0**
Definition
A Taylor series of f about $x_0 = 0$ is called a Maclaurin series.

Theorem
If f has any power series about x_0 then it is the Taylor series

Note
All standard functions $f(x)$ are equal to their Taylor series $P(x)$.
Proof of Theorem

Suppose that $f(x)$ is infinitely differentiable at x_0 and suppose that $f(x)$ can be written as a power series. Then

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$

$$\Rightarrow f(x_0) = \sum_{n=0}^{\infty} a_n 0^n = a_0 0^0 = a_0$$

$$f'(x) = \sum_{n=0}^{\infty} na_n (x - x_0)^{(n-1)} = \sum_{n=1}^{\infty} na_n (x - x_0)^{(n-1)}$$

$$\Rightarrow f'(x_0) = \sum_{n=1}^{\infty} na_n 0^{(n-1)} = 1 \times a_1 0^0 = 1 \times a_1$$
Proof Ctd

\[f''(x) = \sum_{n=2}^{\infty} (n - 1)na_n(x - x_0)^{(n-1)} \]

\[\Rightarrow f''(x_0) = \sum_{n=2}^{\infty} (n - 1)na_n0^{(n-2)} = 1 \times 2 \times a_2 \]

\[f'''(x) = \sum_{n=3}^{\infty} (n - 2)(n - 1)na_n(x - x_0)^{(n-3)} \]

\[\Rightarrow f'''(x_0) = \sum_{n=3}^{\infty} (n - 2)(n - 1)na_n0^{(n-3)} = 1 \times 2 \times 3 \times a_3 \]

\[\vdots \]

\[f^{(j)}(x_0) = j!a_j \]

\[\Rightarrow a_n = \frac{f^{(n)}(x_0)}{n!} \]
Example Find the Maclaurin Series for \(\sin x \).

\[
\begin{align*}
 f(x) &= \sin x & f(0) &= 0 \\
 f'(x) &= \cos x & f'(0) &= 1 \\
 f''(x) &= -\sin x & f''(0) &= 0 \\
 f'''(x) &= -\cos x & f'''(0) &= -1 \\
 f^{(4)}(x) &= \sin x & f^{(4)}(0) &= 0
\end{align*}
\]

\[
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = \sum_{k=0}^{\infty} \frac{f^{(2k)}(0)}{(2k)!} x^{2k} + \sum_{k=0}^{\infty} \frac{f^{(2k+1)}(0)}{(2k+1)!} x^{2k+1}
\]

\[
= 0 + \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1}
\]
(5.8) Common Taylor Series

\[
\frac{1}{1 - x} = \sum_{k=0}^{\infty} x^k \quad |x| < 1
\]

\[
e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} \quad |x| < \infty
\]

\[
\cos x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!} \quad |x| < \infty
\]

\[
\cosh x = \sum_{k=0}^{\infty} \frac{x^{2k}}{(2k)!} \quad |x| < \infty
\]
Taylor Series to Remember

\[
\frac{1}{1 - x} = 1 + x + x^2 + x^3 + x^4 + \ldots \quad |x| < 1
\]

\[
\log(1 - x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \ldots \quad |x| < 1
\]

\[
e^x = 1 + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \ldots
\]

\[
\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \ldots
\]

\[
\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \ldots
\]
(5.9) Convergence of Taylor Series

Definition
The \textit{\textit{n}}th \textit{order Taylor polynomial} for \textit{f} around \textit{x}₀ is

\[P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k \]

Definition
The \textbf{remainder} is the difference

\[R_n(x) = f(x) - P_n(x) \]

Note
The \textbf{remainder} is also called the \textbf{error}. It is the error in approximating a function with its \textit{n}th order Taylor polynomial
Taylor’s Theorem

If \(f(x) \) is (at least) \(n + 1 \) times differentiable on \(I = (x_0 - a, x_0 + a) \) then for each \(x \in I \) there exists \(c \) between \(x \) and \(x_0 \) so that

\[
R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}
\]

and

\[
f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(c)}{(n+1)!}(x - x_0)^{n+1}
\]

Note

If \(n = 0 \) then Taylor’s Theorem is the same as the Mean Value Theorem.
Corollary

If f is infinitely differentiable and

$$\lim_{n \to \infty} R_n(x) = 0$$

for x when $|x - x_0| < R$ then

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \text{ when } |x - x_0| < R$$

where R is the radius of convergence.
Example
Find the Taylor series for e^x about $x = 1$ and show that it converges to e^x for all x.

To find the Taylor series we compute the coefficients defined by

$$a_n = \frac{f^{(n)}(x_0)}{n!} = \frac{e^{x_0}}{n!} = \frac{e}{n!}$$

Then the Taylor series is

$$e^x = \sum_{n=0}^{\infty} \frac{e}{n!} (x - 1)^n = \sum_{n=0}^{N} \frac{e}{n!} (x - 1)^n + R_N(x)$$

where

$$R_N(x) = \frac{f^{(N+1)}(c)}{(N + 1)!} (x - x_0)^{(N+1)} = \frac{e^c}{(N + 1)!} (x - 1)^{(N+1)}$$
Example ctd.

Now c lies between x and 1 hence e^c is finite and

$$\lim_{N \to \infty} \frac{(x - 1)^{(N+1)}}{(N + 1)!} \to \lim_{N \to \infty} \frac{(x - 1)}{(N + 1)} \frac{(x - 1)}{N} \ldots \frac{(x - 1)}{1} \to 0$$

so that $\lim_{N \to \infty} R_N(x) \to 0$

Thus from Taylor’s theorem we have

$$e^x = \sum_{n=0}^{\infty} \frac{e}{n!} (x - 1)^n \quad \forall \quad |x - 1| < R$$

where the radius of convergence is

$$R = \lim_{n \to \infty} \frac{a_n}{a_{n+1}} = \lim_{n \to \infty} \frac{e}{n!} \frac{(n + 1)!}{e} = \lim_{n \to \infty} \frac{n + 1}{1} \to \infty$$
(5.10) Estimations using the remainder term

If we approximate a function by a Taylor Polynomial then the remainder term provides the error in this approximation

\[|f(x) - P_n(x)| = |R_n(x)| \equiv |f^{(n+1)}(c)| \left| \frac{(x - x_0)^{n+1}}{(n + 1)!} \right| \]

where \(c \) is between \(x \) and \(x_0 \)

It is usually not possible to find \(c \) but it is often possible to find an upper bound on the error term.
Example

The Taylor series for \(\cos x \) about \(x_0 = 0 \) is

\[
\cos x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k}}{(2k)!}
\]

Find the lowest degree Taylor polynomial about \(x_0 = 0 \) to provide an approximation for \(\cos x \) that differs by less than 0.001 for all \(x \) in the interval \(-\frac{\pi}{6} < x < \frac{\pi}{6} \).
(5.11) Applications to maxima, minima, indeterminate forms

Theorem

Suppose that f is n times differentiable at x_0 and $f'(x_0) = 0$. Then if $k \leq n$ and

$$f''(x_0) = f'''(x_0) = \ldots = f^{(k-1)}(x_0) = 0 \quad \text{but} \quad f^{(k)}(x_0) \neq 0$$

we have

a local minimum at x_0 if k is even and $f^{(k)}(x_0) > 0$

a local maximum at x_0 if k is even and $f^{(k)}(x_0) < 0$

an inflexion minimum at x_0 if k is odd

Proof based on Taylor’s Theorem – see notes
Example

The Taylor series for $\sin x$ about $x_0 = 0$ is

$$\sin x = \sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k + 1)!}$$

Show that $f(x) = \sin x^6$ has a stationary point at $x = 0$ and determine whether it is a maximum, minimum or point of inflexion?
Application to L’Hopital’s Rule

\[
\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f(x_0) + f'(x_0)(x-x_0) + \frac{1}{2!}f''(x_0)(x-x_0)^2 + \ldots}{g(x_0) + g'(x_0)(x-x_0) + \frac{1}{2!}g''(x_0)(x-x_0)^2 + \ldots}
\]

If \(f(x_0) = g(x_0) = 0 \) but \(f'(x_0) \neq 0, g'(x_0) \neq 0 \) then

\[
\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x_0)}{g'(x_0)}
\]

If \(f(x_0) = g(x_0) = f'(x_0) = g'(x_0) = 0 \) but \(f''(x_0) \neq 0, g''(x_0) \neq 0 \) then

\[
\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f''(x_0)}{g''(x_0)}
\]
Example

The Taylor series for $\ln(1 + x)$ about $x_0 = 0$ is

$$\ln(1 + x) = \sum_{k=0}^{\infty} (-1)^{k+1} \frac{x^k}{k} = x - \frac{x^2}{2} + \frac{x^3}{3} - \ldots$$

Find

$$\lim_{x \to 0} \frac{\ln(1 + x) - x}{x^2}$$

$$\lim_{x \to 0} \frac{\ln(1 + x) - x}{x^2} = \lim_{x \to 0} \frac{-\frac{x^2}{2} + \frac{x^3}{3} - \ldots}{x^2} = -\frac{1}{2}$$
(5.12) MAPLE Notes

taylor(expr, x=a, k); computes Taylor series of expr about x=a up to the term of order k

convert(taylor(expr, x=a, k), polynom); computes the Taylor polynomial of order \(k-1 \) for expr about x=a

readlib(coeftayl);

coefftayl(expr, x=a, k); computes the \(k \)th coefficient in the Taylor series expansion expr about x=a.