Ian Doust's information pages

Publications

Below is a list of my publications. Some of these have links to arXiv, DVI or PDF versions of the papers, which may be viewed on-screen or downloaded for printing.
  1. Doust, I., and Al-shakarchi, S., Isomorphisms of AC(σ) spaces for countable sets, Proceedings of the 28th IWOTA Conference, Chemnitz, August 14-18, 2017. Operator Theory: Advances and Applications, (to appear). .
  2. Blower, G., and Doust, I., Operational calculus and integral transforms for groups with finite propagation speed, Adv. Pure Appl. Math. 8 (2017), 265-283.
    (ArXiV version)
    (An earlier version of some of this work)
  3. Doust, I., and Leinert, M., Approximation in AC(σ), (under revision).
  4. Doust, I., Sanchez, S., and Weston, A., The asymptotic enhanced negative type of finite ultrametric spaces, J. Math. Anal. Appl., 446 (2017), 1776-1793.
  5. Blower, G., Brett, C., and Doust, I., Hill's spectral curves and the invariant measure of the periodic KdV equation, Bull. Sci. math., 140 (2016) 864-899.
  6. Doust, I., and Leinert, M., Isomorphisms of AC(σ) spaces, Studia Math. 228 (2015), 7-31.
  7. Doust, I., Sanchez, S., and Weston, A., A direct proof that ℓ(3) has generalized roundness zero, Expo. Math., 33 (2015), 259-267.
  8. Blower, G., Brett, C., and Doust, I., Logarithmic Sobolev inequalities and spectral concentration for the cubic Schroedinger equation, Stochastics, 86 (2014), 870-881.
  9. Blower, G., and Doust, I., Functional calculus on Venturi for groups with finite propagation speed. (This preprint has been superceded by a new paper)
  10. Caffarelli, E., Doust, I., and Weston, A., Metric trees of generalized roundness one, Aequationes Math., 83 (2012), 239-256.
  11. Ashton, B., and Doust, I., AC(σ) operators, J. Operator Theory, 65 (2011), 255-279.
  12. Blower, G., Doust, I., and Taggart, R.J., A maximal theorem for holomorphic semigroups on vector-valued spaces, The AMSI-ANU Workshop on Spectral Theory and Harmonic Analysis (Canberra 2009), pp. 105-114, Proc. Centre Math. Appl. Austral. Nat. Univ., 44, Austral. Nat. Univ., Canberra, 2010.
  13. Doust, I., and Terauds, V., Extensions of an AC(σ) functional calculus, J. Math. Anal. Appl. 362 (2010), 100-106. [doi:10.1016/j.jmaa.2009.10.001].
  14. Ashton, B., and Doust, I., Compact AC(σ) operators, Integral Equations Operator Theory, 63 (2009), 459-472.
  15. Doust, I., and Weston, A., Enhanced negative type for finite metric trees, J. Funct. Anal., 254 (2008), 2336-2364; with Corrigendum.
  16. Doust, I., and Lancien, G., The spectral type of sums of operators on non-Hilbertian Banach lattices, J. Austral. Math. Soc., 84 (2008), 193-198.
  17. Doust, I., Lancien, F., and Lancien, G., Spectral theory for linear operators on $L^1$ or $C(K)$ spaces, Asymptotic Geometric Analysis, Harmonic Analysis, and related topics (Murramarang 2006), 1-10, Proc. Centre Math. Appl. Austral. Nat. Univ., 42, Austral. Nat. Univ., Canberra, 2007.
  18. Ashton, B., and Doust, I., A comparison of algebras of functions of bounded variation, Proc. Edin. Math. Soc., 49 (2006), 575--591.
  19. Ashton, B., and Doust, I., Functions of bounded variation on compact subsets of the plane, Studia Math., 169 (2005), 163-188.
  20. Blower, G., and Doust, I., A maximal theorem for holomorphic semigroups, Q. J. Math., 56 (2005), 21-30 .
  21. Doust, I., Hirschhorn, M.D., and Ho, J., Trigonometric identities, linear algebra and computer algebra, Amer. Math. Monthly, 112 (2005), 155-164.
  22. Doust, I., and Gillespie, T.A., Schur multiplier projections on the von Neumann-Schatten classes, J. Operator Theory, 53 (2005), 251-272.
  23. Doust, I., and Gillespie, T.A., Well-boundedness of sums and products of operators, J. London Math. Soc. (2), 68 (2003), 183-192.
  24. Ashton, B., Cheng, Q., and Doust, I., Some remarks on well-bounded and scalar-type decomposable operators, Houston J. Math., 28 (2002), 849-864.
  25. Doust, I., Norms of 0-1 matrices in Cp, pp 50-55, Proc. Centre Math. Appl. Austral. Nat. Univ., 39, Austral. Nat. Univ., Canberra, 2001.
  26. Cheng, Q., and Doust, I., Well-bounded operators on nonreflexive Banach spaces II, Quaest. Math., 24 (2001), 183-191.
  27. Doust, I., and Gillespie, T.A., An example in the theory of $AC$-operators, Proc. Amer. Math. Soc., 129 (2001), 1453-1457. (JSTOR version)
  28. Doust, I., and Walden, B.L., The quadratic root-coefficient iteration, (preprint).
  29. Cheng, Q., and Doust, I., Compact well-bounded operators, Glasg. Math. J., 43 (2001), 467-475. (Local copy)
  30. Tognetti, K. and Doust, I., Development of teaching modules on the Internet, Austr. Math. Soc. Gazette, 25 (1998), 15-16.
  31. Cheng, Q., and Doust, I., The dual theory of well-bounded operators, J. Operator Theory , 37 (1997), 35-50.
  32. Berkson, E., Doust, I., and Gillespie, T.A., Properties of $AC$-operators, Acta Sci. Math (Szeged), 63 (1997), 249-271. (PDF version)
  33. Doust, I., and Walden, B.L., Compact $AC$-operators, Studia Math., 117 (1996), 275-287.
  34. Cowling, M.G., Doust, I., McIntosh, A., and Yagi, A., Banach space operators with a bounded $H^\infty$ functional calculus, J. Austral. Math. Soc., Ser. A , 60 (1996), 51-89. (doi: http://dx.doi.org/10.1017/S1446788700037393)
  35. Cheng, Q., and Doust, I., Well-bounded operators on nonreflexive Banach spaces, Proc. Amer. Math. Soc. , 124 (1996), 799-808. ( JSTOR version)
  36. Doust, I., Contractive projections on Lebesgue-Bochner spaces, Function Spaces (Edwardsville, IL, 1994), 101--109, Lecture Notes in Pure and Appl. Math., 172, Dekker, New York, 1995.
  37. Doust, I., and deLaubenfels, R., Functional calculus, integral representations, and Banach space geometry, Quaestiones Math., 17 (1994), 161-171.
  38. Doust, I., A weaker condition for normality, Glasgow Math. J. , 35 (1994), 249-253.
  39. Doust, I., and Qiu, B., The spectral theorem for well-bounded operators, J. Austral. Math. Soc., Ser. A, 54 (1993), 334-351.
  40. Doust, I., and Ricker, W.J., Spectral projections for Hermitian operators, Linear Algebra Appl. , 175 (1992), 75-96.
  41. Doust, I., and Jefferies, B., (eds), Miniconference on Probability and Analysis, University of New South Wales, 1991 , Proc. Centre Math. Appl., ANU, Canberra, Vol. 29, 1992.
  42. Doust, I., Interpolation and extrapolation of well-bounded operators, J. Operator Theory , 28 (1992), 229-250.
  43. Doust, I., A study of counting, Australian Universities Review, 33 (1990), 18-19
  44. Doust, I., Staffing in Higher Education - Mathematics in the Nineties, Gazette Aust. Math. Soc., 17 (1990), 43-46.
  45. Doust, I., Jefferies, B., Li, C., and McIntosh, A., (eds), Miniconference on Operators in Analysis, Macquarie University, 1989}, Proc. Centre Math. Anal., ANU, 1989.
  46. Doust, I., Well-bounded and scalar-type spectral operators on $L^p$ spaces, J. London Math. Soc. (2) , 39 (1989), 525-534. [doi:10.1112/jlms/s2-39.3.525]
  47. Doust, I., Well-bounded and scalar-type spectral operators on spaces not containing $c_0$, Proc. Amer. Math. Soc. , 105 (1989), 367-370. ( JSTOR version)
  48. Doust, I., An example in the theory of spectral and well-bounded operators, Proc. Centre Math. Anal., ANU, 24 (1989), 83-90.
  49. Doust, I., Contractive projections on Banach spaces, Miniconference on Functional Analysis & Optimization, Proc. Centre Math. Anal., ANU,20 , (1988), 50-58.



Ian Doust's homepage.