As hinted at last week, the MMP produces either a minimal model or a Mori fibre space. The latter is the end result of an extremal contraction \(S \rightarrow W\) where \(\dim W = 0, 1\).

We know that this must be the contraction of some extremal ray.

1.1. Dichotomy. Given a surface \(S\), how do we know which one we get without running the MMP? We have the Easy dichotomy theorem

Theorem 1. A surface \(S\) produces a Mori fibre space iff there exists a nonempty Zariski open \(U \subset S\) such that for all \(p \in U\) there is an irreducible curve \(D\) through \(p\) with \(K_S \cdot D < 0\).

There is a much better answer to the above question. The Hard dichotomy theorem says that the Kodaira dimension determines whether a surface \(S\) produces a Mori fibre space of minimal model. This is much harder to prove, we will prove the easy direction:

Theorem 2. A surface \(S\) produces a Mori fibre space iff \(\kappa(S) = -\infty\). This simply means \(h^0(S, O(nK_S)) = 0\) for all \(m > 0\).

Proof. Suppose \(\phi : S \rightarrow W\) is a Mori fibre space, and \(h^0(S, O(nK_S)) \neq 0\) for some positive integer \(n\). Let \(D \in |nK_S|\). Pick a curve \(C\) in a fibre of \(\phi\) but not in \(D\), then \(0 > nK_S \cdot C = D \cdot C \geq 0\), (since \(C\) is contracted, it intersects \(K_S\) negatively by def. of extremal contraction) which is a contradiction. □

1.2. Characterisation of Mori fibre spaces.

Theorem 3. Let \(\phi : S \rightarrow W\) be a Mori fibre space. If \(\dim W = 1\) then \(S\) is a birationally ruled surface. If \(\dim W = 0\), then \(S\) is \(\mathbb{P}^2\).

Note 1. We can verify the above using the easy dichotomy theorem. If \(S\) is birationally ruled, there there exists an isomorphism \(U \rightarrow \mathbb{P}^1 \times C\) for some curve \(C\) and open set \(U\). Let \(p \in U\), pick a curve \(F\) through \(p\) contained in a fibre, then \(F \cdot K_S = F \cdot \pi_1^*(K_{\mathbb{P}^1}) + F \cdot \pi_2^*(K_C) < 0\). [Hartshorne II Ex. 8.3].

It is easy to show that \(\mathbb{P}^2\) produces a Mori fibre space.

Recall that the contraction theorem last week identified extremal contractions with extremal rays. The above theorem can be used to characterise extremal rays.

Theorem 4. Let \(S\) be a surface, \(K_S\) not nef (recall that extremal rays live in \(NE(S)_{K_S < 0}\), \(K_S\) not nef guarantees this is nonempty). An extremal ray \(\mathbb{R}_+[C]\) is one of the following:

1. \(C\) is a \((-1)\)-curve with \(K_S \cdot C = -1\) and \(\phi_C : S \rightarrow W\) is the contraction of the \((-1)\) curve \(C\).
2. \(C\) is a fibre with \(K_S \cdot C = -2\), of the algebraic \(\mathbb{P}^1\)-bundle \(\phi_C : S \rightarrow W\).
3. \(C\) is a line in \(S \simeq \mathbb{P}^2\), with \(K_S \cdot C = -3\) and \(\phi_C : S \rightarrow W\) is the structure morphism \(\mathbb{P}^2 \rightarrow \text{Spec} k\).

Conversely, any curve \(C\) satisfying the criteria of 1, 2, or 3 span an extremal ray \(\mathbb{R}_+[C]\). It has minimal intersection with \(-K_S\) among the curves in its numerical class.
1.3. Castelnuovo’s rationality criterion. As an application of the above, we prove

Theorem 5. Let S be a surface, it is rational iff $h^1(S, \mathcal{O}_S) = h^0(S, \mathcal{O}_S(2K_S)) = 0$.

Proof. Since these numbers are both birational invariants, it is easy to check that they hold for \mathbb{P}^2.

The strategy to prove the converse:

1. show the numerical criteria forces K_S to be not nef,
2. run MMP and show we end up with a Mori fibre space
3. use the characterisation of Mori fibre spaces to check the few cases to show S is rational.

Note that very ample divisors have positive self intersection, hence ample divisors do too. Kleiman’s criterion means that nef divisors have nonnegative self intersection.

Suppose K_S is nef, then $K_S^2 \geq 0$. Recall Riemann-Roch for surfaces:

$$\chi(\mathcal{O}_S(D)) - \chi(\mathcal{O}_S) = \frac{1}{2}D \cdot (D - K_S)$$

where $D \in \text{Div} S$. Applying this for $D = -K_S$, we get

$$h^0(S, \mathcal{O}_S(-K_S)) \geq \chi(\mathcal{O}_S(-K_S)) = K_S^2 + \chi(\mathcal{O}_S) = K_S^2 + 1 \geq 1$$

This means there is an effective $D \in |-K_S|$, so for every very ample A (recall that by Bertinis theorem, for very ample A, almost all $A' \in |A|$ is irreducible nonsingular curves) we have

$$0 \leq A \cdot D = A \cdot (-K_S) \leq 0 \text{ (since } K_S \text{ nef)}$$

giving $-K_S \sim 0 = D$. Hence $h^0(S, \mathcal{O}_S(2K_S)) = 1$ contradicting hypothesis.

Running the MMP leaves the numerical criteria invariant, so the end result cannot have nef K_S. This means we get a Mori fibre space, either birationally ruled $\mathbb{P}^1 \times C$ or \mathbb{P}^2 by characterisation of Mori fibre spaces. It suffices to compute the genus of C to show it is \mathbb{P}^1.

This follows from the following computation:

$$0 = h^1(S, \mathcal{O}_S) = h^1(\mathbb{P}^1 \times C, \mathcal{O}_{\mathbb{P}^1 \times C})$$
$$= h^1(C, \mathcal{O}_C)$$
$$= g_C$$

[EGA, III, 6.7.8]:

$$H^1(\mathbb{P}^1 \times C, \pi_1^* \mathcal{O}_{\mathbb{P}^1} \otimes \pi_2^* \mathcal{O}_C) = H^0(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}) \otimes H^1(C, \mathcal{O}_C) \otimes H^0(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}) \otimes H^0(C, \mathcal{O}_C)$$

\square