The paper proposes a new rigorous result in the estimation of the metric entropy of a smooth $C^{1+\gamma}$ transitive hyperbolic dynamical system $T: M \to M$, on a compact Riemannian manifold M.

It is known that the statistical properties of such a system are described by a “natural” measure, the Sinaï-Bowen-Ruelle (SBR) probability measure μ. The author obtains estimates of (i) the SBR measure, (ii) the μ-Lyapunov exponents of T, (iii) the rate of decay of correlations with respect to C^γ test functions, and (iv) the pressure (for repellers).

These estimates are proved when $\dim M = 2$ except for expanding systems where they are established in all dimensions. The method relies on the approximation of smooth hyperbolic dynamical systems by Markov chains. Let $(\mathcal{P}_n)_{n \in \mathbb{N}}$ be a sequence of Markov partitions such that $\lim_n \text{diam} \mathcal{P}_n = 0$. Define the matrix

$$(Q_n)_{i,j} = \frac{m(A_{n,i} \cap T^{-1}A'_{n,j})}{m(A'_{n,j})},$$

where m is the volume and $A_{n,k}$ describes the generic atom of \mathcal{P}_n. Then Q_n has a largest eigenvalue ρ_n and a strictly positive associated eigenvector v_n. Then define the stochastic matrix $(P_n)_{i,j} = (Q_n)_{i,j}v_{n,j}/P_n v_{n,i}$: it has a unique fixed eigenvector p_n. Then $\mu_n(\cdot) = \sum_{i=1}^{k_n} p_{n,i}m(A_{n,i} \cap \cdot)/m(A_{n,i})$ converges towards μ, $\lambda_n = -\sum_{i,j=1}^{k_n} P_n(i,P_n)_{ij} \log(Q_n)_{ij}$ estimates the sum of the positive exponents and the μ-entropy of the system is approximated by $h_n = \log \rho_n + \lambda_n$.

These results expand the previous one obtained by the same author; examples illustrate the method. The interest of the method—in contrast to standard techniques using a single long orbit of the system—consists in using information from all regions of the phase space. Unfortunately, in dimensions larger than 2 the numerical construction of Markov partitions may be time-consuming
Reviewed by Bernard Schmitt

[References]

Note: This list reflects references listed in the original paper as accurately as possible with no attempt to correct errors.

1. Bowen R 1975 Equilibrium states and the ergodic theory of Anosov diffeomorphisms Lecture Notes in Mathematics 470 (Berlin: Springer) MR0442989 (56 #1364)

17. Ulam S M 1964 *Problems in Modern Mathematics* (New York: Interscience) [MR0280310 (43 #6031)]

© Copyright American Mathematical Society 2000, 2006