Counting points on K3 surfaces: some complexity guesstimates

David Harvey

University of New South Wales

20th October 2015
ICERM
Introduction

\(X = \text{variety over } \mathbb{Z} \)

\(p = \text{prime} \)

\(X_p = \text{reduction of } X \text{ modulo } p \)

Zeta function at \(p \):

\[
Z_p(T) = \exp \left(\sum_{r \geq 1} \frac{|X_p(F_{p^r})|}{r} T^r \right) \in \mathbb{Q}(T).
\]
Theorem (H., 2007)

Let X be a hyperelliptic curve of genus g. We may compute $Z_p(T)$ in

$$g^{O(1)} p^{1/2+o(1)}$$

bit operations.

Theorem (H., 2012)

Let X be a hyperelliptic curve of genus g. We may compute $Z_p(T)$ for all $p < N$ in

$$g^{O(1)} N(\log N)^{3+o(1)}$$

bit operations.

The latter is “average polynomial time” — $(g \log p)^{O(1)}$ per prime.
Are these algorithms practical? **Yes!**

Square-root time algorithm:
- For $g = 4$ and $p \approx 10^{14}$, runs in about 21 hours

Average polynomial time algorithm:
- Baby version implemented by H.–Sutherland (2014)
- So far only $g = 2, 3$
- Computing $Z_p(T)$ for all $p < 2^{30} \approx 10^9$:
 - Genus two: 1.3 days. (Previously: 1.4 years with smalljac.)
 - Genus three: 4.0 days. (Previously: 3.8 years with hypellfrob.)
- $g \geq 4$ under development; toy implementation already exists
Theorem (H., 2014)

Let X be any variety whatsoever. We may compute $Z_p(T)$ in

$$O(p^{1/2+o(1)})$$

bit operations. We may compute $Z_p(T)$ for all $p < N$ in

$$O(N(\log N)^{3+o(1)})$$

bit operations.

Big-O constants depend on X.

Can this sort of algorithm be made practical for K3 surfaces?
For the rest of this talk, “K3 surface” means a smooth quartic surface in \mathbb{P}^3.

Zeta function has the form

$$Z_p(T) = \frac{1}{(1 - T)(1 - pT)(1 - p^2 T)C_p(T)}$$

where $C_p \in \mathbb{Z}[T]$, $\deg C_p = 21$.

Roots of $C_p(T)$ in \mathbb{C} all have absolute value $1/p$.
Tomorrow is the big day...

No-one will mind if I slip in a few flux capacitor jokes
What is the state of the art for computing $C_p(T)$ for a single prime p?

The fastest implementation I know is Edgar Costa’s C++ code:

- Start with **classic AKR** algorithm (Abbott–Kedlaya–Roe, 2006),
- add “sparse Frobenius expansion” (H. 2007),
- add “controlled reduction” (H. 2010, unpublished),

I will call this algorithm **linear AKR**.

Time complexity is essentially $O(p)$.

Space complexity is $O(\log p)$ — in practice this is constant.
Costa can compute:

- $C_p(T)$ for $p \sim 2^{16}$ in about **2.8 CPU hours**.
- $C_p(T)$ for all $p < 2^{16}$ in about **9,000 CPU hours** (about 1 year).
- Memory footprint ~ 300 MB (could surely be improved).

Example from Costa’s thesis, for $p = 1,048,583$:

$$C_p(T/p) = \frac{1}{p} \left(pt^{21} + 160408t^{20} - 363853t^{19} + 94073t^{18}
ight.$$
$$ - 640447t^{17} + 29941t^{16} - 575731t^{15} - 347906t^{14} + 482949t^{13}$$
$$ - 503777t^{12} + 615760t^{11} + 615760t^{10} - 503777t^{9} + 482949t^{8}$$
$$ - 347906t^{7} - 575731t^{6} + 29941t^{5} - 640447t^{4} + 94073t^{3}$$
$$ - 363853t^{2} + 160408t + p \right).$$

Question: can we beat Costa’s code?
For large p, the only currently viable alternative to AKR framework is Lauder’s “deformation method” (2004).

Optimised implementation by Pancratz–Tuitman (2014).

Time complexity $p^{1+o(1)}$.

Space complexity linear. For $p \sim 2^{16}$, probably about 200 GB.

For $p \sim 2^{11}$, about 5 times slower than Costa (on very sparse input).

Maybe this can be improved — I am not an expert.

For the rest of the talk I will stay in the AKR framework.
A crash course on AKR

Let $F \in \mathbb{Z}[x_0, x_1, x_2, x_3]$, homogeneous, degree 4.

We work with a space of **differentials** of the form

$$\left(\frac{A_1}{F} + \frac{A_2}{F^2} + \cdots \right) \Omega,$$

where

- Ω is a certain fixed 3-form,
- $A_k \in \mathbb{Q}_p[x_0, \ldots, x_3]$ homogeneous of degree $4k - 4$,
- A_k approaches zero p-adically quickly enough as $k \to \infty$.

(really... these are differentials over the weak completion of the coordinate ring of the complement in \mathbb{P}^3 of a lift to characteristic zero of the surface of interest which was originally defined over a finite field... but anyway.)
Let V be the quotient of the above differentials by the relations

$$\frac{\partial_i G}{F^m} \Omega \sim \frac{1}{m-1} \frac{(\partial_i F) G}{F^{m-1}} \Omega$$

for $G \in \mathbb{Q}_p[x_0, \ldots, x_3]$ and $i = 0, 1, 2, 3$.

(really... this V is a certain Monsky–Washnitzer cohomology space.)

One can explicitly find monomials $x^{u_1}, \ldots, x^{u_{21}}$ so that

$$\frac{x^{u_1}}{F} \Omega, \quad \frac{x^{u_2}}{F^2} \Omega, \ldots, \frac{x^{u_{20}}}{F^2} \Omega, \quad \frac{x^{u_{21}}}{F^3} \Omega$$

forms a basis for V.

There is a reduction algorithm: it takes as input a differential

$$\omega = \left(\frac{A_1}{F} + \cdots + \frac{A_n}{F^n} \right) \Omega,$$

and uses the relations to write ω as a linear combination of basis elements.
Finally, there is also a **Frobenius** map $\sigma : V \to V$.

Classic AKR:

1) For each ω in the basis, compute an approximation

$$
\sigma(\omega) \approx \left(\frac{A_1}{F} + \frac{A_2}{F^2} + \cdots + \frac{A_n}{F^n} \right) \Omega.
$$

Must choose n big enough to ensure enough p-adic precision in step (3).

2) Run the reduction algorithm to write each $\sigma(\omega)$ in terms of the basis.

3) This yields a “matrix of Frobenius”. Its characteristic polynomial is $C_p(T)$ (up to some scaling).

Can work modulo p^4 throughout.
“It works!! I finally invent something that works!”
Problem #1: the approximations for $\sigma(\omega)$ are horrible dense polynomials!

About p^4 terms altogether.

Solution: use **sparse Frobenius expansion** to get an approximation

$$\sigma(\omega) \approx \left(\frac{A_p}{F^p} + \frac{A_{2p}}{F^{2p}} + \frac{A_{3p}}{F^{3p}} + \frac{A_{4p}}{F^{4p}} \right) \Omega$$

where the A_{kp} are polynomials in x_0^p, \ldots, x_3^p (more or less).

Number of terms does not depend on p.

Modifications to achieve to linear AKR
Problem #2: the standard reduction algorithm does not preserve sparsity!

Solution: use **controlled reduction**.

Example: if $\text{deg } G = 9$ one can reduce

$$\frac{x^\alpha G}{F^m \Omega} \implies \frac{x^\alpha G'}{(x_0 \cdots x_3) F^{m-1} \Omega}$$

where G' also has degree 9.

This preserves sparsity.
classic AKR

AKR with sparse Frobenius and controlled reduction
Problem #3: there are too many monomials of degree 9!

In fact, 220 of them.

Each reduction step involves a matrix-vector multiplication of size 220.

(Costa’s code spends almost all of its time performing these multiplications.)

Solution: use relations to extract some redundancy.

Can reduce 220 to 64.

Yields a speedup by a factor of almost 12.

The resulting algorithm is what I call **linear AKR**.
From this slide onwards, all running times are guesstimates, i.e.,

“If my calculations are correct, when this baby hits eighty-eight miles per hour, you’re gonna to see some serious shit”
First improvement — interpolation

Problem: in the sparse expansion

\[
\sigma(\omega) \approx \left(\frac{A_p}{F^p} + \frac{A_{2p}}{F^{2p}} + \frac{A_{3p}}{F^{3p}} + \frac{A_{4p}}{F^{4p}} \right) \Omega
\]

there are still too many terms — in fact 1624 terms.

Costa needs to perform \(p \) reduction steps for each term.

And he needs to do that once for each of the 21 basis differentials.
Consider the composition of p successive reduction steps:

$$\frac{x^{\alpha p} G}{F^m} \Omega \implies \frac{x^{\alpha p} G'}{(x_0^p \cdots x_3^p) F^{m-p}} \Omega$$

Let

$$T(\alpha_0 p, \alpha_1 p, \alpha_2 p, \alpha_3 p) \in M_{64}(\mathbb{Z}/p^4\mathbb{Z})$$

be the corresponding matrix that sends G to G'.

Observation: T is p-adically analytic in $\alpha_0 p, \ldots, \alpha_3 p$.

Instead of computing $T(\alpha_0 p, \ldots, \alpha_3 p)$ for 1624 tuples, we could compute it for 69 tuples and interpolate to get the rest.

$(69 = 35 + 20 + 10 + 4; \text{this includes all reduction “directions”})$
Time estimate?

- We *gain* a factor of $1624/69 \approx 24$.
- We also *gain* a factor of 21, because the hard work can be shared among all basis differentials.
- We *lose* a factor of 64, because we need matrix-matrix products instead of matrix-vector products.
Time estimate?

- We gain a factor of $\frac{1624}{69} \approx 24$.
- We also gain a factor of 21, because the hard work can be shared among all basis differentials.
- We lose a factor of 64, because we need matrix-matrix products instead of matrix-vector products.

Conclusion: for $p \sim 2^{16}$, reduce 2.8 hours \Rightarrow **22 minutes**.

For all $p < 2^{16}$, reduce from 9000 hours \Rightarrow **1200 hours** (about 7 weeks).
Second improvement — square root trick

Can compute matrix product $M(1) \cdots M(p)$ in $p^{1/2+o(1)}$ time instead of naive $O(p)$ time.

Depends heavily on fast polynomial arithmetic (FFTs).

We apply this to computing the $T(\alpha_0 p, \ldots, \alpha_3 p)$.
So what is my time estimate for a single $p \sim 2^{16}$?

Drum roll....
So what is my time estimate for a single $p \sim 2^{16}$?

Drum roll....

About 2 minutes.

To obtain this number, I estimated the number of FFTs, matrix multiplies, etc, of various sizes, and timed these building blocks using real life code.
But hang on... in 2010, I gave a few talks about the same sort of algorithm.

I even demonstrated an implementation!

It didn’t run nearly that fast!

Does anyone remember the running time?
Let’s go back to 2010 and find out...
Computational examples

Random degree 4 in \mathbb{P}^3 (K3 surfaces) over a prime field.
$
\deg P(T) = 21
$

Used $N = 2$ (ok provided that p is not too ‘small’).

<table>
<thead>
<tr>
<th>p</th>
<th>cores</th>
<th>wall time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1009</td>
<td>12</td>
<td>3.4h</td>
</tr>
<tr>
<td>10007</td>
<td>12</td>
<td>7.7h</td>
</tr>
<tr>
<td>100003</td>
<td>12</td>
<td>18.4h</td>
</tr>
<tr>
<td>1000003</td>
<td>6</td>
<td>121h</td>
</tr>
</tbody>
</table>
Problem: in 2010 everything was metric.

I want to compare to $p \sim 2^{16}$.
We can fix that...
Random degree 4 in \mathbf{P}^3 (K3 surfaces) over a prime field.

$\deg P(T) = 21$

Used $N = 2$ (ok provided that p is not too ‘small’).

<table>
<thead>
<tr>
<th>p</th>
<th>cores</th>
<th>wall time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1009</td>
<td>12</td>
<td>3.4h</td>
</tr>
<tr>
<td>10007</td>
<td>12</td>
<td>7.7h</td>
</tr>
<tr>
<td>65537</td>
<td>12</td>
<td>15.7h</td>
</tr>
<tr>
<td>100003</td>
<td>12</td>
<td>18.4h</td>
</tr>
<tr>
<td>1000003</td>
<td>6</td>
<td>121h</td>
</tr>
</tbody>
</table>

In 2010 it took **8 days** to handle $p \sim 2^{16}$!

So which is it: 2 minutes or 8 days?
What is the difference between 2010 and 2015?

Two main algorithmic differences:

- Matrix size: 64 vs 220.
- Interpolation trick.

If we scale the performance to account for these, we get about 15 minutes.

Now the discrepancy is only a factor of 7.

Easily explained by Sage overhead, hardware improvements.

I think 2 minutes is closer to the truth.

For all $p < 2^{16}$ this yields 140 hours — about 6 days.
Third improvement — average polynomial time

In theory it is now straightforward to convert this to an average polynomial algorithm.

Recall that

\[T(\alpha_0 p, \alpha_1 p, \alpha_2 p, \alpha_3 p) \in M_{64}(\mathbb{Z}/p^4\mathbb{Z}) \]

is the matrix that executes \(p \) reduction steps, starting at position \(x^\alpha \).

The idea is to work over \(\mathbb{Q} \) instead of \(\mathbb{Q}_p \), and replace every \(\alpha_i p \) with a formal variable \(P_i \):

\[T(P_0, P_1, P_2, P_3) \in M_{64}(\mathbb{Z}[P_0, P_1, P_2, P_3]/(P_0, P_1, P_2, P_3)^4). \]

Then the machinery of the “accumulating remainder tree” does the rest.
Problem: the coefficients of $T(P_0, P_1, P_2, P_3)$ are huge integers!

We didn’t see this when working one p at a time, because we always reduced modulo p^4.

But the average polynomial time algorithm has to work “globally”.

Why are they so huge? When we reduced

$$\frac{x^\alpha G}{F_m^\Omega} \implies \frac{x^\alpha G'}{(x_0 \cdots x_3)F^{m-1}}\Omega,$$

we had to write G as a linear combination of the $\partial_i F$.

This involves solving a system of equations over \mathbb{Z}.

So the problem is coefficient growth in the inverse (or RREF) of a matrix.
I do not know how to ameliorate the coefficient growth completely.

Partial solution: use **sideways reduction**.

Instead of reducing like this:

\[
\frac{x^\alpha G}{F^m} \Omega \quad \Longrightarrow \quad \frac{x^\alpha G'}{(x_0 \cdots x_3)F^{m-1}} \Omega,
\]

do it like this:

\[
\frac{x^\alpha G}{F^m} \Omega \quad \Longrightarrow \quad \frac{x_0 x^\alpha G'}{x_1 F^m} \Omega.
\]

Notice the pole order doesn’t change.

Instead we are working on reducing the exponent of \(x_1\).

After \(x_1\) is done, we work on \(x_2\). Then \(x_3\).

At the very end, reduce the pole order.
When is sideways reduction possible?

The algebra is not too hard, but will not fit on this slide.

It requires a nondegeneracy condition on some of the faces of F.

We still have to solve a system of equations, but it is much smaller.

Experiments suggest savings in coefficient size by a factor of about 8.
How long does it take?

Assume the coefficients of F randomly distributed in $[-4, 4]$.

(Note: running time is highly sensitive to the size of the coefficients.)

To handle all $p < 2^{16}$, my estimate is...
How long does it take?

Assume the coefficients of F randomly distributed in $[-4, 4]$.

(Note: running time is highly sensitive to the size of the coefficients.)

To handle all $p < 2^{16}$, my estimate is... **90 hours.**

Memory usage is perhaps **60 GB.**
Table 1: Summary of complexity guesstimates (CPU hours)

<table>
<thead>
<tr>
<th></th>
<th>$p < 2^{16}$</th>
<th>$p < 2^{20}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear AKR (existing code)</td>
<td>9,000</td>
<td>2,300,000</td>
</tr>
<tr>
<td>Linear AKR + interpolation</td>
<td>1,200</td>
<td>310,000</td>
</tr>
<tr>
<td>Square root</td>
<td>140</td>
<td>9,000</td>
</tr>
<tr>
<td>Average polynomial</td>
<td>90†</td>
<td>2,000†</td>
</tr>
<tr>
<td></td>
<td>(60 GB*)</td>
<td>(1 TB*)</td>
</tr>
</tbody>
</table>

†: not to be taken too seriously

*: reasonable time/space tradeoffs available

Conclusions:

- Square root and average polynomial are both highly feasible, and should be serious improvements over existing implementations.
- At this stage, cannot really tell if average polynomial time is worth the trouble.
Thank you!