Faster deterministic integer factorisation

David Harvey
(joint work with Edgar Costa, NYU)

University of New South Wales

6th January 2012, Joint Mathematics Meetings, Boston
The integer factorisation problem

Input: a positive integer N.

Output: complete prime factorisation of N.

Example 1: Input is $N = 91$. Output is 7×13.

Example 2 (RSA-768 challenge): Input is $N =$

$$1230186684530117755130494958384962720772853569595334792197322452151726400507263657518745202199786469389956474942774063845925192557326303453731548268507917026122142913461670429214311602221240479274737794080665351419597459856902143413.$$

Output is

$$33478071698956898786044169848 \times 36746043666799590428244633799$$

$$21269081770479498371376856891 \times 62795263227915816434308764267$$

$$24313889828837938780022876147 \times 60322838157396665112792333734$$

$$11652531743087737814467999489 \times 17143396810270092798736308917.$$
A few factoring algorithms:

- Quadratic sieve (QS). Non-rigorous subexponential time.
- Number field sieve (NFS). Non-rigorous subexponential time. Fastest known algorithm in practice for large N (see previous slide).
- Elliptic curve method (ECM). Subexponential time, complexity depends mainly on smallest prime factor p. Rigorously established, modulo a hard conjecture on distribution of smooth numbers in short intervals.
- Class groups of quadratic forms. Rigorously established subexponential probabilistic (Las Vegas) time bound.
- Shanks: deterministic exponential time bound $O(N^{1/5+o(1)})$, proof conditional on ERH.
What about rigorously established deterministic time bounds, not conditional on ERH (or anything else)?

Best known bounds have complexity of the shape

$$O(N^{1/4 + o(1)}).$$
Unconditional deterministic bounds

Let $M_{\text{int}}(d)$ = cost of multiplying integers with d bits.

Fürer’s algorithm: $M_{\text{int}}(d) = O(d \log d 2^{\log^* d})$.

Unconditional deterministic factoring complexity bounds:

- Strassen (1976):
 \[O(M_{\text{int}}(N^{1/4} \log N) \log N). \]

- Bostan–Gaudry–Schost (2007):
 \[O(M_{\text{int}}(N^{1/4} \log N)). \]

- Our result:
 \[O \left(M_{\text{int}} \left(\frac{N^{1/4} \log N}{\sqrt{\log \log N}} \right) \right). \]
Where does the $\sqrt{\log \log N}$ speedup come from?

Last week Andrew Sutherland asked me:

“Does it come from some sort of sieve over primes in some sort of baby-step/giant-step algorithm?”

Yes it does! Nice guess!
Let $M(d) = \text{cost of multiplying polynomials of degree } d \text{ over in } (\mathbb{Z}/N\mathbb{Z})[x]$.

Assuming $d = O(N)$, we have

$$M(d) = O(M_{\text{int}}(d \log N))$$

using Kronecker substitution.
Strassen’s algorithm

Basic idea of Strassen’s algorithm:

Assume the simple case $N = pq$ with $p < \sqrt{N}$, $q > \sqrt{N}$.

Put $L = N^{1/4}$ (we’ll pretend this an integer).

Let

$$f(x) = (x + 1)(x + 2) \cdots (x + L).$$

Then

$$(\sqrt{N})! = (L^2)! = f(0)f(L) \cdots f((L - 1)L).$$

Compute $f(x)$ in time $O(M(L) \log L)$ using a product tree.

Evaluate $f(x)$ at $0, L, \ldots (L - 1)L$ in time $O(M(L) \log L)$ using a remainder tree (i.e. fast multipoint evaluation).

Finally $\gcd((\sqrt{N})!, N) = p$.

David Harvey (joint work with Edgar Costa, NYU) Faster deterministic integer factorisation
The Bostan–Gaudry–Schost algorithm

BGS Lemma 1 (shifting evaluation points):
Let $P(x)$ have degree d. Given as input

$$P(0), P(\beta), \ldots, P(d\beta),$$

and assuming certain invertibility conditions (ignored in this talk), we can compute

$$P(\alpha), P(\alpha + \beta), \ldots, P(\alpha + d\beta)$$

in time $O(M(d))$.

(Coefficients of $P(x)$ are not part of the input!)

Proof: write down Lagrange interpolation formula and reinterpret it as a polynomial multiplication.
BGS Lemma 2:

Given values of
\[(x + 1)(x + 2) \cdots (x + d)\]
at
\[x = 0, \beta, \ldots, d\beta,\]
we can compute values of
\[(x + 1)(x + 2) \cdots (x + 2d)\]
at
\[x = 0, \beta, \ldots, 2d\beta\]
in time \(O(M(d))\).
The Bostan–Gaudry–Schost algorithm

Proof:

\[(x + 1) \cdots (x + d)\] at \(x = 0, \beta, \ldots, d\beta\)

\[(x + d + 1) \cdots (x + 2d)\] at \(x = 0, \beta, \ldots, d\beta\)

\[(x + 1) \cdots (x + 2d)\] at \(x = 0, \beta, \ldots, d\beta\)

\[(x + 1) \cdots (x + d)\] at \(x = (d + 1)\beta, \ldots, (2d + 1)\beta\)

\[(x + d + 1) \cdots (x + 2d)\] at \(x = (d + 1)\beta, \ldots, (2d + 1)\beta\)

\[(x + 1) \cdots (x + 2d)\] at \(x = (d + 1)\beta, \ldots, (2d + 1)\beta\)

shift \((d + 1)\beta\)

shift \(d\)

multiply

David Harvey (joint work with Edgar Costa, NYU)

Faster deterministic integer factorisation
Main BGS algorithm:

First evaluate \((x + 1)\) at \(x = 0, L\).

Next evaluate \((x + 1)(x + 2)\) at \(x = 0, L, 2L\).

Next evaluate \((x + 1)(x + 2)(x + 3)(x + 4)\) at \(x = 0, L, 2L, 3L, 4L\).

\[
\vdots
\]

Finally evaluate \((x + 1) \cdots (x + L)\) at \(x = 0, L, \ldots, (L - 1)L\).

Total time is \(O(M(1) + M(2) + M(4) + \cdots + M(L)) = O(M(L))\).

This improves on Strassen by \(O(\log L) = O(\log N)\).
New algorithm

Observation: if \(N \) is even then it’s easy to find a factor!

If \(N \) is composite and odd, it must have an odd factor.

Instead of taking GCD with

\[1 \times 2 \times 3 \times \cdots \times \sqrt{N}, \]

we should take GCD with

\[1 \times 3 \times 5 \times \cdots \times \sqrt{N}. \]

We apply the BGS algorithm to the polynomial

\[f(x) = (x + 1)(x + 3) \cdots (x + 2L + 1) \]

where \(L = N^{1/4}/\sqrt{2} \). Immediately this saves a factor of \(\sqrt{2} \).
Why stop at 2?

Suppose N composite and not divisible by 2 or 3.

We should then use

$$f(x) = (x + 1)(x + 5)(x + 7)(x + 11) \cdots (x + 6L + 1)(x + 6L + 5)$$
$$= h(x)h(x + 6) \cdots h(x + 6L)$$

where $h(x) = (x + 1)(x + 5)$.

It is straightforward to generalise the BGS algorithm to the case where $h(x)$ has degree > 1.

The overall speedup is $\sqrt{\frac{6}{2}} = \sqrt{3}$.
New algorithm

Why stop at 3?

Suppose N composite and not divisible by any primes $< B$.

Let $Q = \prod_{p < B} p$, and apply generalised BGS algorithm to

$$ h(x) = \prod_{\substack{Q \mid (j,Q)=1\hspace{1cm} j=1 \hspace{1cm} (j,Q)=1}}^Q (x + j). $$

Overall speedup is

$$ \prod_{p < B} \sqrt{\frac{p}{p-1}} = \Theta(\sqrt{\log B}) $$

by Mertens’ theorem.
We can't choose B arbitrarily large, since we need time to compute $h(x)$, whose degree is $\phi(Q)$, which is exponential in B.

It is safe to take say $Q \approx N^{1/8}$, so $B \approx \frac{1}{8} \log N$.

Then the overall speedup is

$$\Theta\left(\sqrt{\log \log N}\right).$$
Thank you!