Throughout, as in lectures, \(F \) always denotes a field.

(1) [8 marks] For each of the following, say whether the statement is true or false and give a brief reason. You will get one mark for a correct true/false answer, and if your true/false answer is correct then you will get one mark for a good reason.

(i) Consider the permutation \(\sigma = [2 \ 3 \ 1] \). Then \(\sigma^2 = \text{id} \).
(ii) Let \(A \in M_{33}(\mathbb{Z}) \) be a matrix with determinant 2. Then the vector \(A^{-1}\left(\begin{array}{c} -8 \\ 4 \end{array}\right) \) has integer entries.
(iii) The row matrix \(\left(x^2 + 3x + 1 \ x^2 + 2x \ x + 1 \right) : \mathbb{R}^3 \to \mathbb{R}[x]_{\leq 2} \) defines a co-ordinate system on \(\mathbb{R}[x]_{\leq 2} \).
(iv) Let \(V^+ \leq M_{33}(\mathbb{R}) \) be the subspace of symmetric matrices and \(W \) be the subspace spanned by the matrices
\[
\begin{pmatrix}
1 & 2 & -1 \\
0 & 1 & 1 \\
0 & 0 & 2
\end{pmatrix},
\begin{pmatrix}
2 & 0 & 0 \\
4 & 2 & 0 \\
-2 & 2 & 4
\end{pmatrix}.
\]
Then the sum \(V^+ + W \) is direct.

(2) [3 marks] Let \(P : \mathbb{R}^2 \to \mathbb{R}^2 \) be orthogonal projection onto \(\left(\begin{array}{c} 1 \\ 0 \end{array}\right) \).

(i) Find the matrix representing \(P \).
(ii) Show that \((\text{id} - P)^2 = \text{id} - P \).

(3) [3 marks] Consider the map \(T : \mathbb{R}[x]_{\leq 2} \to \mathbb{R}^3 \) defined by
\[
Tf = \begin{pmatrix}
f(0) \\
f'(0) \\
f''(0)
\end{pmatrix}.
\]

(i) Show that \(T \) is linear by finding a representing matrix of linear maps or otherwise.
(ii) Show that \(T \) is an isomorphism.
(iii) Express the co-ordinate system \(T^{-1} : \mathbb{R}^3 \to \mathbb{R}[x]_{\leq 2} \) as a row vector with entries in \(\mathbb{R}[x]_{\leq 2} \).

PLEASE TURN OVER
(4) [3 marks]
Consider the linear map \(T : \mathbb{R}[x]_{\leq 2} \rightarrow \mathbb{R}^2 \) given by the matrix
\[
\begin{pmatrix}
1 & 1 & 2 \\
1 & 2 & 3
\end{pmatrix}
\]
with respect to the co-ordinate system \((1, x, x^2) : \mathbb{R}^3 \rightarrow \mathbb{R}[x]_{\leq 2}\) (and the standard co-ordinate system id : \(\mathbb{R}^2 \rightarrow \mathbb{R}^2\) on \(\mathbb{R}^2\)).

(i) Find \(T(3 - 2x^2) \).
(ii) Compute a basis for ker \(T \) and hence a co-ordinate system for ker \(T \).

(5) [3 marks] In this question, be sure to argue logically and provide complete proofs. Marks will be deducted for poorly written proofs.
Let \(T : V \rightarrow W \) be a surjective linear map and \(B \subseteq V \).

(i) Prove that if \(B \) is a spanning set for \(V \), then \(T(B) \) is a spanning set for \(W \).
(ii) If \(B \) is linearly independent, is it true that \(T(B) \) is linearly independent too?
Justify your answer fully.
Throughout, as in lectures, \mathbb{F} always denotes a field. Recall also that $ev_x(f) = f(x)$.

(1) [8 marks] For each of the following, say whether the statement is true or false and give a brief reason. You will get one mark for a correct true/false answer, and if your true/false answer is correct then you will get one mark for a good reason.

(i) The permutation $\sigma = [2 \ 1 \ 3]$ is even.
(ii) Consider the matrix
$$C = \frac{1}{5} \begin{pmatrix} 3 & -4 \\ 4 & 3 \end{pmatrix}.$$ Then the matrix
$$C^{-1} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} C$$
represents reflection about a line in \mathbb{R}^2.
(iii) Let W, W' be subspaces of a vector space V and $T : W \oplus W' \rightarrow V$ be the natural map defined by $T(w) = w + w'$. Then $\ker T$ is isomorphic to $W \cap W'$.
(iv) The row matrix $(2x + 4 \ x - 3 \ x - 5) : \mathbb{R}^3 \rightarrow \mathbb{R}[x]_{\leq 2}$ defines a co-ordinate system on $\mathbb{R}[x]_{\leq 2}$.

(2) [3 marks] Consider the vector space $V = L(\mathbb{R}[x]_{\leq 1}, \mathbb{R})$ and note that we have the following vectors $\frac{d}{dx}, ev_1, ev_2 \in V$. Express $\frac{d}{dx}$ as a linear combination of ev_1, ev_2. (Recall that $ev_x(f) = f(x)$).

(3) [3 marks] Consider the subspaces
$$W = \mathbb{R}(1 + x^3) + \mathbb{R}(x + x^3), \quad W' = \mathbb{R}(1 + x + x^2 + x^3) + \mathbb{R}(3 + x^2 + 2x^3).$$
(i) Compute $W \cap W'$.
(ii) Is the sum $W + W'$ direct?

PLEASE TURN OVER
(4) [3 marks] Let $T : \mathbb{R}[x]_{\leq 1} \rightarrow \mathbb{R}[x]_{\leq 2}$ be the map defined by

$$(Tf)(x) = (x^2 - 2) \frac{df}{dx} - 3xf(x).$$

(i) Explain briefly why T is linear.

(ii) Find the matrix representing T with respect to the standard co-ordinate systems $(1 \ x) : \mathbb{R}^2 \rightarrow \mathbb{R}[x]_{\leq 1}$ and $(1 \ x \ x^2) : \mathbb{R}^3 \rightarrow \mathbb{R}[x]_{\leq 2}$.

(5) [3 marks] In this question, be sure to argue logically and provide complete proofs. Marks will be deducted for poorly written proofs.

Let $B = \{v_1, \ldots, v_n\}$ be a linearly independent set of vectors in the vector space V and $v \in V$. Prove that $B \cup \{v\}$ is linearly independent if and only if $v \notin \text{Span}(B)$.