Definition of adjoint

Aim lecture: We generalise the adjoint of complex matrices to linear maps between fin dim inner product spaces.

In this lecture, we let \(\mathbb{F} = \mathbb{R} \) or \(\mathbb{C} \). Let \(V, W \) be inner product spaces with inner products denoted \((\cdot|\cdot)_V, (\cdot|\cdot)_W \). Let \(D_V : V \to V^*, D_W : W \to W^* \) be the canonical maps.

Prop-Defn

Let \(T : V \to W, T' : W \to V \) be linear.

1. \(T^T \circ D_W = D_V \circ T' : W \to V^* \) iff for all \(v \in V, w \in W \) we have \((T'w|v)_V = (w|Tv)_W \).

2. Given \(T \), there is at most one linear map \(T' : W \to V \) satisfying the condn in 1) above. In this case we write \(T' = T^* \) & call it the adjoint of \(T \).

3. If \(V \) is fin dim then \(T^* \) exists & \(T^* = D_V^{-1} \circ T^T \circ D_W \).

Rem The defn of the adjoint depends critically on the inner products involved though the notation does not record this!

Proof. For 3), just note that \(D_V \) is invertible & \(D_V^{-1} \circ T^T \circ D_W \) is linear being the composite of two conjugate linear maps with a linear one.
Proof cont’d

For 1) just note

\[T^T \circ D_W = D_V \circ T' \iff \text{for all } w \in W, \ T^T(D_Ww) = D_V(T'w) \]
\[\iff \text{for all } w \in W, \ (D_Ww) \circ T = (T'w|\cdot) \]
\[\iff \text{for all } w \in W, \ (w|T(\cdot)) = (T'w|\cdot) \]

For 2), suppose \(T', T'' \) both satisfy the condn in 1). Then \(D_V \circ T' = D_V \circ T'' \). Suffice show for any \(w \in W \) that \(T'w = T''w \). But \(D_V(T'w) = D_V(T''w) \) so the result follows from injectivity of \(D_V \).
E.g. Let $V = C^\infty_c$ be the \mathbb{R}-space of compactly supported (= zero outside of some compact set) infinitely differentiable functions on \mathbb{R}. Note $T = \frac{d}{dt}$ is a linear map from $V \rightarrow V$. Note that we have an inner product $(f|g) = \int_{-\infty}^{\infty} f(t)g(t)dt$. What's T^*?

A Given $f, g \in V$ note that integration by parts gives

$$
(f|\frac{dg}{dt}) = \int_{-\infty}^{\infty} f(t)\frac{dg(t)}{dt} dt
$$

$$
= [f(t)g(t)]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} \frac{df(t)}{dt} g(t) dt
$$

$$
= -\int_{-\infty}^{\infty} \frac{df(t)}{dt} g(t) dt
$$

$$
= (\frac{df}{dt}|g)
$$

Hence $T^* = -\frac{d}{dt}$.

Q Let $A \in M_{mn}(\mathbb{F})$ & $T_A : \mathbb{F}^n \rightarrow \mathbb{F}^m$ be the assoc lin map. What is $T_A^* : \mathbb{F}^m \rightarrow \mathbb{F}^n$?

Answer

$T_A^* = T_A^*$

Proof. It suffices to show that for any $\mathbf{v} \in \mathbb{F}^n$, $\mathbf{w} \in \mathbb{F}^m$ we have $(A^* \mathbf{w} | \mathbf{v}) = (\mathbf{w} | A \mathbf{v})$. Indeed
The following formulae hold whenever they make sense. S, T are appropriate linear maps.

1. $(S + T)^* = S^* + T^*$.
2. $(\beta S)^* = \overline{\beta} S^*$ for $\beta \in \mathbb{F}$.
3. $(S \circ T)^* = T^* \circ S^*$.
4. $(T^*)^* = T$.
5. $id^* = id$.

In particular, if V, W are fin dim, then the adjoint operator $(\cdot)^* : L(V, W) \to L(W, V) : S \mapsto S^*$ is conjugate linear.

Proof. These all follow from defns & corresponding results for the transpose. For example,
Orthogonal complements to kernels

Prop

Let $T : V \rightarrow W$ be a linear map between fin dim inner product spaces. Then

1. $(\ker T)^\perp = \text{im } T^*$
2. If V, W are fin dim then, $\text{rank } T = \text{rank } T^*$.

Proof. 1) We show equiv that $(\text{im } T^*)^\perp = \ker T$. Let $v \in V$

$$v \in (\text{im } T^*)^\perp \iff (T^*w|v) = 0 \text{ for all } w \in W$$
$$\iff (w|Tv) = 0 \text{ for all } w \in W$$
$$\iff 0 = (Tv|\cdot) = D_W(Tv)$$
$$\iff Tv = 0, \text{ (recall } D_W \text{ is injective})$$
$$\iff v \in \ker T$$

For 2) we use rank-nullity

$$\text{rank } T^* = \dim(\text{im } T^*) = \dim((\ker T)^\perp)$$
$$= \dim V - \dim(\ker T) = \dim(\text{im } T) = \text{rank } T.$$
Kernel of $T^* \circ T$

Prop

Let $T : V \rightarrow W$ be linear.

1. If $S : W \rightarrow X$ is linear then $\ker(S \circ T) \supseteq \ker T$.
2. $\ker T^* \circ T = \ker T$.
3. If V, W are fin dim then $\text{rank } T^* \circ T = \text{rank } T$.

Proof. 1) is easy ex.

2) By 1), it suffices to show $\ker T^* \circ T \subseteq \ker T$ so let $v \in \ker T^* \circ T$. Then

$$0 = (T^*(Tv)|v) = (Tv|Tv)$$

so $Tv = 0$ & $v \in \ker T$. Part 2) follows.

3) This follows from the rank-nullity thm since part 2) ensures the nullities are the same (whilst the domains are also the same).