Polynomial functions of endomorphisms

Aim lecture: We look at polynomial functions of endomorphisms which not only arise naturally, but are useful for understanding the endomorphisms themselves. In particular, we give the Cayley-Hamilton theorem.

Defn

Let $p(x) = \sum_{i=0}^{d} p_i x^i \in \mathbb{F}[x]$ be a polynomial & $T : V \rightarrow V$ be linear. We define $p(T) = \sum_{i=0}^{d} p_i T^i$ where $T^0 = \text{id}$ & $T^n = T \circ \ldots \circ T$ is the composite of T with itself n times. This is a linear map from $V \rightarrow V$.

E.g. If $p(x) = x^2 - 3x + 2$, then

$$p\left(\frac{d}{dx}\right) =$$
More examples of poly fns of endomorphisms

E.g. 1 If $R : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is reflection about a line $\mathbb{R}v$ then we may simplify

$$4R^4 + 3R^3 + 5R =$$

E.g. 2 Let $N = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

$$I + 2N + 3N^2 + N^3 =$$
Prop

Let \(p(x) = \sum_{i=0}^{d} p_i x^i \in \mathbb{F}[x] \) & \(C : W \rightarrow V \) be an isomorphism of \(\mathbb{F} \)-spaces. For any linear \(T : V \rightarrow V \), we have

\[
p(C^{-1} \circ T \circ C) = C^{-1} \circ p(T) \circ C.
\]

In particular, if \(C \) is a co-ord system & \(A \) the matrix representing \(T \) wrt \(C \), then the matrix representing \(p(T) \) is \(p(A) \).

Proof. We first verify the case \(p(x) = x^n \).

\[
(C^{-1} \circ T \circ C)^n = \ldots
\]

Hence, in general we have

\[
p(C^{-1} \circ T \circ C) = \sum_{i=0}^{d} p_i (C^{-1} \circ T \circ C)^i = \sum_{i=0}^{d} p_i (C^{-1} \circ T^i \circ C) = C^{-1} \circ p(T) \circ C.
\]
Cayley-Hamilton theorem

Theorem

Let $V = \text{fin dim } \mathbb{F}$-space & $T : V \rightarrow V$ be a linear map. Then $cp_T(T) = 0$.

Proof in case $\mathbb{F} = \mathbb{Q}, \mathbb{R}, \mathbb{C}$ only. (The same proof applies in general given the existence of algebraic closure). Suppose $C : \mathbb{F}^n \rightarrow V$ is a co-ord system & $A = C^{-1} \circ T \circ C$ the matrix representing T. If we know the thm holds for the matrix A, we are done since then

$$C^{-1} \circ cp_T(T) \circ C = cp_T(A) = cp_A(A) = 0$$

so we must have $cp_T(T) = 0$.

We may thus assume $T = A$. Since any real or rational matrix is also a complex matrix, we may also assume $\mathbb{F} = \mathbb{C}$ & further, by the above argument, replace A with any similar matrix. By triangularisation, we may assume $A = (a_{ij})$ is upper triangular.
Now in this case we see \(cp_A(\lambda) = (a_{11} - \lambda)(a_{22} - \lambda) \ldots (a_{nn} - \lambda) \) so it suffices to show that

\[
0 = (a_{11} l_n - A)(a_{22} l_n - A) \ldots (a_{nn} l_n - A) \quad (*)
\]

Note that each factor \(a_{ii} l_n - A \) is upper triangular with a 0 in the \((i, i)\)-th entry. It suffices now to complete the following easy exercise in induction.

Lemma

The bottom \(n - i + 1 \) rows of the matrix \((a_{ii} l_n - A)(a_{i+1,i+1} l_n - A) \ldots (a_{nn} l_n - A)\) are zero.

Why? (Draw picture)
Example using the Cayley-Hamilton theorem

E.g. Consider the matrix

\[A = \begin{pmatrix} 0 & 1 \\ 2 & 3 \end{pmatrix}. \]

Write \(A^4 \) as a linear combn of \(A \) & \(I \).
Criterion for diagonalisability via algebraic multiplicity

Prop

Let $A \in M_{nn}(\mathbb{F})$. Suppose the e-values are $\lambda_1, \ldots, \lambda_r$ with geometric multiplicities n_1, \ldots, n_r & algebraic multiplicities a_1, \ldots, a_r.

1. For all i we have $n_i \leq a_i$.
2. A is diagonalisable over \mathbb{F} iff $cp_A(\lambda)$ factors into linears over \mathbb{F} & $n_i = a_i$ for all i.

Proof. Note 2) (\Rightarrow) is easy whilst 2)(\Leftarrow) follows from 1) & our old criterion for diagonalisability & the fact that $cp_A(\lambda)$ factors into linears over $\mathbb{F} \Rightarrow \sum_i a_i = n$.

Daniel Chan (UNSW) Lecture 23: Polynomial functions of matrices Semester 2 2013 7 / 8
We prove 1). Since geometric & algebraic multiplicities are similarity invariants, we may replace A with a similar matrix. Let $E \leq \mathbb{F}^n$ be the sum of the e-spaces & E' be a vector space complement to E in \mathbb{F}^n. Changing to a co-ord system adapted to $\mathbb{F}^n = E \oplus E'$ we may assume $A = \begin{pmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{pmatrix}$ is block upper triangular with $A_{11} = \lambda_1 I_{n_1} \oplus \ldots \oplus \lambda_r I_{n_r}$.

Now

$$\text{cp}_A(\lambda) = \det \begin{pmatrix} A_{11} - \lambda I & A_{12} \\ 0 & A_{22} - \lambda I \end{pmatrix} = \det(A_{11} - \lambda I) \det(A_{22} - \lambda I)$$

(ex or by triangularising A_{22}). But clearly $(\lambda - \lambda_i)^{n_i} | det(A_{11} - \lambda I)$ so $n_i \leq a_i$.
