Eigenvectors

Aim lecture: The simplest T-invariant subspaces are 1-dim & these give rise to the theory of eigenvectors. To compute these we introduce the similarity invariant, the characteristic polynomial.

Prop-Defn

Let $T : V \rightarrow V$ be linear. The following are equivalent condns on $v \in V$.

1. Fv is a T-invariant (automatically 1-dimensional) subspace.
2. $Tv = \lambda v$ for some $\lambda \in F$.
3. $v \in \ker(T - \lambda \text{id})$ for some $\lambda \in F$.

If these hold & furthermore $v \neq 0$ we say v is an *eigenvector* for T with *eigenvalue* λ.

Proof. Clearly 2) \iff 3) since

$$Tv = \lambda v \iff Tv - \lambda \text{id} v = 0 \iff v \in \ker(T - \lambda I).$$

2) \implies 1) by lemma on testing invariance, lecture 20.

For 1) \implies 2) note
Eigenvalues & eigenspaces of an endomorphism

Defn

Let $T : V \rightarrow V$ be linear. An eigenvalue of T is a scalar $\lambda \in F$ such that there is an e-vector v for T with eigenvalue λ. Given such an e-value, the λ-eigenspace of T is the subspace $E_\lambda = \ker(T - \lambda \text{id}) \leq V$. The geometric multiplicity of λ is $\dim E_\lambda$.

E.g. Any real number λ is an e-value for $T = \frac{d}{dx} : C^\infty(\mathbb{R}) \rightarrow C^\infty(\mathbb{R})$ since

In fact $E_\lambda =$
Characteristic polynomial of square matrices

To find e-values of square matrices we need

Prop-Defn

Let \(A = (a_{ij}) \in M_{nn}(\mathbb{F}) \). The **characteristic polynomial of** \(A \) is the function \(cp_A(\lambda) = \det(A - \lambda I_n) \) where \(I_n \) is the \(n \times n \)-identity matrix. This function is a polynomial function of degree \(n \) with co-efficients in \(\mathbb{F} \).

Proof. Note that \(A - \lambda I_n = (a'_{ij}) \) where \(a'_{ij} = a_{ij} \) if \(i \neq j \) whilst \(a'_{ii} = a_{ii} - \lambda \). Now

\[
\det(A - \lambda I_n) = \sum_{\sigma \in S_n} \text{sgn}(\sigma) \prod_{i=1}^{n} a'_{i \sigma(i)}
\]

which is clearly a polynomial function of \(\lambda \).

The summand corresponding to \(\sigma = \text{id} \) is \((a_{11} - \lambda)(a_{22} - \lambda)\ldots(a_{nn} - \lambda)\) which has degree \(n \).

Any other summand contains at least two non-diagonal entries so has degree \(\leq n - 2 \). Hence, \(\deg cp_A(\lambda) = n \).

Scholium The co-efficient of \(\lambda^{n-1} \) in \(cp_A(\lambda) \) is \((-1)^{n-1} \sum_i a_{ii} \).
Prop-defn

Let $A \in M_{nn}(\mathbb{F})$. Then λ is an e-value for A iff it is a root of the characteristic polynomial of A. In this case, the multiplicity of the root is called the \textit{algebraic multiplicity} of the e-value.

\textbf{Proof.} λ is an e-value iff A has an e-vector with e-value λ iff $\ker(A - \lambda I_n) \neq 0$ iff $A - \lambda I_n$ is not invertible iff $\det(A - \lambda I_n) = 0$.

\textbf{E.g.} Find the e-values of $A = \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix}$ & their algebraic & geometric multiplicities.
Prop-Defn

Two matrices $A, B \in M_{nn}(\mathbb{F})$ are similar if there exists $C \in GL_n(\mathbb{F})$ such that $A = C^{-1}BC$ i.e. A is a matrix representing B wrt some co-ordinate system. Being similar is an equivalence relation. In particular,

1. if A is similar to B then B is similar to A.
2. if A is similar to B and B is similar to D, then A is similar to D.

The set of all matrices similar to A is called the similarity class of A.

Proof. Easy ex.

E.g. $A = \begin{pmatrix} 3 & 1 \\ -1 & 1 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$ are not similar for if $A = C^{-1}BC$ then
Similarity invariants

Defn

A function of the form \(f : M_{nn}(\mathbb{F}) \longrightarrow X \) is a *similarity invariant* if \(f(A) = f(B) \) whenever \(A, B \) are similar.

E.g. 1 The characteristic polynomial \(cp : M_{nn}(\mathbb{F}) \longrightarrow \mathbb{F}[\lambda] : A \mapsto cp_A(\lambda) \) is a similarity invariant since if \(B = C^{-1}AC \) for some \(C \in GL_n(\mathbb{F}) \) then

\[
\det(B - \lambda I_n) = \det(C^{-1}AC - \lambda I_n) = \det(C^{-1}[A - \lambda I_n]C) =
\]

E.g. 2 In particular, any of the co-efficients of the characteristic polynomial are similarity invariants. The important ones (up to sign) are the determinant \(\det(A) = cp_A(0) \) & the *trace* which is defined to be \(\text{tr}(A) = \sum_{i=1}^{n} a_{ii} \) where \(A = (a_{ij}) \).

E.g. 3 Similarly, the set of eigenvalues is a similarity invariant.
Sums & products of e-values

Let $A \in M_{nn}(\mathbb{C})$. Since \mathbb{C} is alg. closed, it has n e-values $\lambda_1, \ldots, \lambda_n$ when counted with (algebraic) multiplicity.

Formula

$$\text{tr}(A) = \sum_i \lambda_i, \quad \text{det}(A) = \prod_i \lambda_i$$

Proof. Note the following equality of polynomials in λ

$$\text{det}(A - \lambda I_n) = \prod_i (\lambda_i - \lambda).$$

Equating constant terms gives $\text{det}(A) = \prod_i \lambda_i$ while comparing co-effs of λ^{n-1} gives the trace formula.

E.g. Suppose you know two of the e-values of $A \in M_{33}(\mathbb{C})$ are 2, 3 and A has diagonal entries 1, 1, 4. Find the third e-value λ_3.

Daniel Chan (UNSW)
Lecture 21: Eigenvectors & similarity invariants
Semester 2 2013
7 / 11
Characteristic polynomials of endomorphisms

Similarity invariants can be extended to endomorphisms of finite dimensional vector spaces. For example

\[V = \text{fin dim } F\text{-space} & T : V \rightarrow V \text{ be linear. For any co-ordinate system } C : F^n \rightarrow V, \text{ we may define the characteristic polynomial of } T, \text{ denoted } \text{cp}_T(\lambda), \text{ to be the characteristic polynomial of the representing matrix } C^{-1} \circ T \circ C. \text{ This is well-defined since given any other co-ordinate system } C_1 : F^n \rightarrow V, \text{ the characteristic polynomials of } C^{-1} \circ T \circ C & C_1^{-1} \circ T \circ C_1 \text{ are the same, so the definition is independent of the choice of co-ord system.} \]

Proof. We need only check equality of characteristic polynomials by showing \(C^{-1} \circ T \circ C & C_1^{-1} \circ T \circ C_1 \text{ are similar. Indeed} \)

\[
C_1^{-1} \circ T \circ C_1
\]

Rem We similarly can define \(\text{det}(T), \text{tr}(T) \) etc.

E.g. We have seen that \(T = \frac{d}{dx} : \mathbb{R} \cos x \oplus \mathbb{R} \sin x \rightarrow \mathbb{R} \cos x \oplus \mathbb{R} \sin x \text{ is} \)

represented by the matrix

Daniel Chan (UNSW) Lecture 21: Eigenvectors & similarity invariants Semester 2 2013 8 / 11
Using co-ordinates, we can calculate e-vectors, e-values & e-spaces using

Prop

Let $V = \text{fin dim } \mathbb{F}$-space & $T : V \rightarrow V$ be linear. Let $C : \mathbb{F}^n \rightarrow V$ be a co-ord system & $A = C^{-1} \circ T \circ C$ be the representing matrix. Then

1. $x \in \mathbb{F}^n$ is an e-vector of A with e-value λ iff Cx is an e-vector of T with e-value λ.

2. The e-values of T & A are the same. They are the roots of $\text{cp}_A(\lambda) = \text{cp}_T(\lambda)$.

3. If E_λ is the λ-e-space of A then $C(E_\lambda)$ is the λ-e-space of T.

Proof. We just prove 1), as 2) & 3) readily then follow.

$$Ax = \lambda x \iff C^{-1} \circ T \circ Cx = \lambda x \iff$$
Example

E.g. We compute the e-vectors & e-values of $T : \mathbb{R}[x]_{\leq 2} \rightarrow \mathbb{R}[x]_{\leq 2}$ defined by

$$(Tp)(x) = xp'(x) - 2p'(x) - p(x).$$