Isomorphisms preserve linear concepts

Aim lecture: Given a vector space or linear map between vector space, the easiest way to compute with them is to use co-ordinate systems. We show how this works.

Prop 1

Let $T : V \longrightarrow W$ be an isomorphism of \mathbb{F}-spaces & $B \subseteq V$ be a finite subset.

1. For any subspace $V' \leq V$, we obtain an isomorphism by restriction $T|_{V'} : V' \longrightarrow T(V')$.
2. B is a spanning set for V iff $T(B)$ is a spanning set for W.
3. B is linearly independent iff $T(B)$ is.
4. B is a basis for V iff $T(B)$ is basis for W.

Rem An important case where we use this propn is where T is a co-ordinate system.

Proof. For 1) note that $T|_{V'}$ is surjective because we altered the co-domain to $T(V')$. It is injective since the eqn $Tv = w$ still has unique solns (if at all). Finally, we know $T|_{V'}$ is linear so we are done.
Proof continued

Note that 4) follows from 2) & 3) put together.

2) (\Rightarrow) Suppose \(B = \{v_1, \ldots, v_n\} \) spans \(V \). Hence for any \(w \in W \) we may write \(T^{-1}w = \sum_i \beta_i v_i \) for some scalars \(\beta_i \in F \). Then \(w = \sum_i \beta_i T v_i \in \text{Span}(T(B)) \) so the forward implication holds. To prove the reverse implication, we just apply the (\Rightarrow) result proved to \(T^{-1} : W \rightarrow V \) & the subset \(T(B) \).

3) (\Rightarrow) We prove the contrapositive & suppose \(T(B) \) is linearly dependent so there is a non-trivial linear relation

\[
\sum_i \beta_i T v_i = 0 \quad \text{for some } \beta_i \in F
\]

say with \(\beta_j \neq 0 \). Then \(B \) is also linearly dependent since applying \(T^{-1} \) to the above eqn gives the non-trivial linear relation \(\sum_i \beta_i v_i = 0 \). As in 2), the converse is proved by applying the forward implication to \(T^{-1} \) & \(T(B) \).
Example on finding a basis for a span

E.g. Use the co-ordinate system $C = (1 \ x \ x^2) : \mathbb{F}^3 \rightarrow \mathbb{F}[x]_{\leq 2}$ to determine a basis and hence co-ord system for $W = \text{Span}(1 + x + x^2, -1 + x - 2x^2, 2 + 4x + x^2)$. (You can do this question directly too without co-ordinates).

A Prop 2) shows that $C^{-1}(W) = \text{Span}$

From first year we know how to reduce this spanning set for $C^{-1}(W)$ to a basis.
Matrix representing a linear map wrt co-ordinate systems

Let $T : V \rightarrow W$ be a linear map and $C_V : \mathbb{F}^n \rightarrow V$, $C_W : \mathbb{F}^m \rightarrow W$ be co-ordinate systems. Consider the composite map

$$C_W^{-1} \circ T \circ C_V : \mathbb{F}^n \xrightarrow{C_V} V \xrightarrow{T} W \xrightarrow{C_W^{-1}} \mathbb{F}^m.$$

This is a linear map from $\mathbb{F}^n \rightarrow \mathbb{F}^m$ so can be represented by an $m \times n$-matrix in $M_{mn}(\mathbb{F})$.

Defn

The *matrix representing T wrt co-ordinate systems C_V, C_W* is the matrix giving the linear map $C_W^{-1} \circ T \circ C_V$.

Rem Recall the co-ordinate systems are given by row matrices $C_V = (v_1 \ldots v_n) \in V^n$, $C_W = (w_1 \ldots w_m) \in W^m$ which are essentially “ordered bases”. In the literature, it is more common to speak of matrices representing T wrt ordered bases.

Rem Knowing the representing matrix $A = C_W^{-1} \circ T \circ C_V$ & the co-ordinate systems C_V, C_W allows you to recover all the information about T for $T = C_W \circ A \circ C_V^{-1}$. In particular, A will allow us to compute whatever we like about T.

Daniel Chan (UNSW)
Lecture 15: Using co-ords to compute kernel, image etc
Semester 2 2013
Let X be a set and consider the \mathbb{F}-space of functions $V = \text{Fun}(X, \mathbb{F})$.

Lemma

Fix a function $p(x) \in \text{Fun}(X, \mathbb{F})$. The map $p(x) : \text{Fun}(X, \mathbb{F}) \to \text{Fun}(X, \mathbb{F}) : f(x) \mapsto p(x)f(x)$ is linear.

Proof. For $f(x), g(x) \in \text{Fun}(X, \mathbb{F})$, $\beta \in \mathbb{F}$, the distributive law

$$p(x)(f(x) + g(x)) = p(x)f(x) + p(x)g(x)$$

shows that the map $p(x)$ respects addition whilst the commutative & associative law

$$p(x)\beta f(x) = \beta p(x)f(x)$$

shows the map $p(x)$ respects scalar multiplication.

Rem The notation for this map is bad but common.
Example of finding representing matrix

E.g. Consider the linear map $T : \mathbb{R}[x]_{\leq 2} \rightarrow \mathbb{R}[x]_{\leq 3}$ defined by $(Tf)(x) = (x - 1)f'(x) - 2f(x)$ & the co-ordinate systems $C_1 = (1 \times x^2) : \mathbb{R}^3 \rightarrow \mathbb{R}[x]_{\leq 2}$, $C_2 : (1 \times x^2 \times x^3) : \mathbb{R}^4 \rightarrow \mathbb{R}[x]_{\leq 3}$. Find the matrix representing T wrt C_1, C_2.

Rem Note that T is linear since $T = (x - 1) \circ \frac{d}{dx} - 2 \text{id}$ & we know $x - 1, \frac{d}{dx}, \text{id}$ are linear as are composites & linear combns.

A We consider $\mathbb{R}^3 \xrightarrow{C_1} \mathbb{R}[x]_{\leq 2} \xrightarrow{T} \mathbb{R}[x]_{\leq 3} \xrightarrow{C_2^{-1}} \mathbb{R}^4$.

We know from lecture 12, the representing matrix $A \in M_{43}(\mathbb{R})$ has i-th column $C_2^{-1} \circ T \circ C_1 e_i$.

1st column is
Isomorphisms preserve kernels & images

The following allows us to compute kernels & images of linear maps from the representing matrix.

Prop 2

Let \(T : V \rightarrow W \) be a linear map & \(C_1 : V' \rightarrow V, C_2 : W' \rightarrow W \) be isomorphisms. Let \(T' = C_2^{-1} \circ T \circ C_1 : V' \rightarrow W' \).

1. \(\text{im } T = C_2(\text{im } T') \).
2. \(\ker T = C_1(\ker T') \).

Proof. Note that \(C_2 \circ T' = T \circ C_1 \).

For 1), observe that since \(C_1 \) is onto we have \(C_1(V') = V \). Thus

\[
\text{im } T = T(V) = T(C_1(V')) = C_2(T'(V')) = C_2(\text{im } T').
\]

For 2) we first show that \(C_1(\ker T') \subseteq \ker T \) so let \(v' \in \ker T' \). Then
\[
T(C_1v') = C_2(T'v') = C_10 = 0
\]
so \(C_1v' \in \ker T \) & we must have \(C_1(\ker T') \subseteq \ker T \). The reverse inclusion is proved similarly or by applying the inclusion already proved to \(C_1^{-1}, C_2^{-1} \) & \(T', T \) with roles reversed.
Example computing bases for kernels & images

Recall e.g. Consider the linear map $T : \mathbb{R}[x]_{\leq 2} \rightarrow \mathbb{R}[x]_{\leq 3}$ defined by $(Tf)(x) = (x - 1)f'(x) - 2f(x)$ & the co-ordinate systems $C_1 = (1 \times x^2) : \mathbb{R}^3 \rightarrow \mathbb{R}[x]_{\leq 2}$, $C_2 : (1 \times x^2 \ x^3) : \mathbb{R}^4 \rightarrow \mathbb{R}[x]_{\leq 3}$. Compute ker T, im T by finding bases for them.

A Recall the representing matrix $C_2^{-1} \circ T \circ C_1$ is

$$A = \begin{pmatrix} -2 & -1 & 0 \\ 0 & -1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

A basis for ker A is

so by prop 1 & 2, a basis for ker T is

A basis for im A is

so by prop 1 & 2, a basis for im T is