Aim lecture: We relate the important notions of the span of a set of vectors and the image of a linear map. They can be used to give “parametric forms” for vector spaces & in particular, help construct co-ordinate systems.

Prop-Defn

Let $T: V \to W$ be a linear map.

1. For any $V' \leq V$ we have $T(V') = \{ Tv' \in W | v' \in V' \}$ is a subspace of W.
2. In particular, the image of T, defined to be $\text{im } T = T(V)$ is a subspace of W.

Proof. We just need to check closure axioms. Note $0_W = T0_V \in T(V')$ so $T(V')$ is non-empty. Also, for $v', v'' \in V', \beta \in \mathbb{F}$ we have

$$\beta T v' + Tv'' = T(\beta v' + v'') \in T(V')$$

so closure axioms hold & propn-defn is proved.

1. Note that surjectivity of T just means that $\text{im } T = W$.
2. $T(V')$ is an example of a set defined by “parametric form” where the parameter is $v' \in V'$.
The image of a linear map \(T : \mathbb{F}^n \rightarrow V \)

Prop-Defn

Let \(C : \mathbb{F}^n \rightarrow V \) be a linear map given by the row matrix \((v_1 \ldots v_n) \in V^n\). Then

\[
\text{im } T = \mathbb{F}v_1 + \ldots + \mathbb{F}v_n.
\]

We define the \(\mathbb{F}\)-span of \(v_1, \ldots, v_n \) to be the subspace \(\text{im } T \) of \(V \) and denote it \(\text{Span}(v_1, \ldots, v_n) \). In other words, the span is the set of all linear combinations of \(v_1, \ldots, v_n \).

Proof. Just calculate

Note that the span does not depend on the order of the vectors so it makes sense to make the following

Defn

We say that \(\{v_1, \ldots, v_n\} \) is a *spanning set* for \(V \) or *spans* \(V \) if \(\text{Span}(v_1, \ldots, v_n) = V \) or equiv, the map \(C : \mathbb{F}^n \rightarrow V \) above is surjective. In this case we say \(V \) is *finitely spanned.*
First year example

Make sure you remember from MATH1241/1251, how to do the following question.

E.g. Does \(S = \{1 + 2x^2, 1 - 2x, 2 + x + 5x^2\} \) span \(\mathbb{R}[x]_{\leq 2} \)?

A Since \(S \subseteq \mathbb{R}[x]_{\leq 2} \), need only check given any \(p(x) = a + bx + cx^2 \in \mathbb{R}[x]_{\leq 2} \), is it true that \(p(x) \in \text{Span}(S) \), i.e. can we always solve

\[
\alpha(1 + 2x^2) + \beta(1 - 2x) + \gamma(2 + x + 5x^2) = a + bx + cx^2.
\]
E.g. Let V be the set of solns (in $C^\infty(\mathbb{R})$) to the DE $\frac{d^2y}{dx^2} + y = 0$. Show that V is a subspace of $C^\infty(\mathbb{R})$ by showing it is the span of some set of vectors. Also, find a co-ordinate system for V.
We can generalise the old defn of span to (possibly) infinite sets.

Defn
Let V be a vector space and $S \subseteq V$. The *span* of S, denoted $\text{Span}(S)$, is defined to be the set of all linear combns of elements of S, i.e. set of all vectors of the form $\beta_1v_1 + \ldots + \beta_nv_n$ where $v_1, \ldots, v_n \in S$.

Prop
With above notn, $\text{Span}(S)$ is the unique smallest subspace of V containing S. More precisely, any subspace $W \leq V$ which contains S must also contain $\text{Span}(S)$.

Proof. One can check closure axioms to see $\text{Span}(S)$ in this more general setting is still a subspace. It clearly contains S. Suppose $W \leq V$ contains S. It closed under linear combns so in particular, contains all linear combns of elts of S, i.e. it contains $\text{Span}(S)$.
Span as an “increasing” function of S

We look at the question of how $\text{Span}(S)$ changes as you vary S.

Prop

Let $V = \mathbb{F}$-space and $S \subseteq V, v \in V$.

1. $\text{Span}(S) \subseteq \text{Span}(S \cup \{v\})$.
2. Equality in 1) holds iff $v \in \text{Span}(S)$.

Proof. Note that $\text{Span}(S \cup \{v\})$ is a subspace containing S so the minimality property of $\text{Span}(S)$ ensures 1) holds.

Suppose now equality holds in 1). Then

$$v \in \text{Span}(S \cup \{v\}) = \text{Span}(S).$$

Conversely suppose that $v \in \text{Span}(S)$. Then $\text{Span}(S)$ is a subspace containing $S \cup \{v\}$ so must contain $\text{Span}(S \cup \{v\})$. Hence equality holds in 1).
Let start with a non-zero $v_1 \in \mathbb{R}^3$ and let $S = \{v_1\}$. Then $\text{Span}(S) = \mathbb{R}v_1$ is a line.

Now let’s add $v_2 \in \mathbb{R}^3$ to S so $S = \{v_1, v_2\}$. There are 2 cases.
Defn

We say that a spanning set S for an F-space V is *minimal* if any proper subset $S' \subset S$ does not span V. Equivalently, by the previous propn, S is a minimal spanning set if each $v \in S$ is not contained in $\text{Span}(S - \{v\})$ i.e. v is not a linear combn of other vectors in S.

Any finitely spanned vector space has a minimal spanning set. Indeed, start with any finite spanning set S. Then either it is minimal or we can find some $v \in S$ which is a linear combn of other vectors in S. We throw away v and repeat until a minimal one is found. This algorithm terminates because S is finite.

All vector spaces have minimal spanning sets, but the proof in general requires Zorn’s lemma so will be omitted.
Example on finding minimal spanning sets

E.g. Find a minimal spanning set for $\text{Span}(S)$ where
$S = \{ p_1(x) = 3 + x, p_2(x) = x + x^2, p_3(x) = 3 + 2x + x^2 \}$.